Уровень алгоритма

Алгоритм поэлементного построения матрицы Адамара размерности степени 2

Материал из Алговики
Перейти к: навигация, поиск

Основные авторы описания: Ю.Бугаков, Е. Кужамалиев, А.Ю.Чернявский (редактирование), С.Н. Леоненков (предварительная проверка)



Построение матрицы Адамара
Последовательный алгоритм
Последовательная сложность [math]O( \left[ \frac{n}{4}\right]\,2^{2n})[/math]
Объём входных данных [math]1[/math]
Объём выходных данных [math]2^{2n}[/math]
Параллельный алгоритм
Высота ярусно-параллельной формы [math]O(1)[/math]
Ширина ярусно-параллельной формы [math]O(2^{2n})[/math]


1 Свойства и структура алгоритма

1.1 Общее описание алгоритма

Важную роль в алгебре и комбинаторике играют матрицы Адамара, которые впервые были введены в математический обиход в конце прошлого века одним из крупнейших французских математиков Жаком Адамаром (1865-1963). Их применение в науке и технике посвящены тысячи публикаций. Они предоставляют эффективные возможности для организации хранения, обработки и передачи информации.

Квадратная матрица Н порядка m с элементами ±1 называется матрицей Адамара, если выполняется условие

[math] H_m\,H_m^T = m\,E_m [/math]

Нетрудно заметить, что различные строки матрицы Адамара попарно ортогональны [1]. Также, можно увидеть из определения, что m четно и

[math] H_{2m} = \begin{pmatrix} H_{m} & H_{m}\\ H_{m} & -H_{m}\end{pmatrix} [/math]

С матрицами Адамара связан ряд нерешенных проблем, одна из которых состоит в следующем. Мы уже видели, что порядок m матрицы Адамара при m ≥ 3 может быть лишь четным. Более того, при m ≥ 4 порядок обязан делиться на 4. До сих пор остается открытым вопрос: для любого ли m, кратного 4, существует матрица Адамара порядка m? Неизвестно, в частности, существует ли матрица Адамара порядка 268 (это наименьший порядок, кратный 4, для которого матрица Адамара еще не построена).

Часто матрицу Адамара нормализуют и рассматривают размерности степени 2 [2][3][4]). В дальнейшем будем рассматривать только такие случаи. Переопределим матрицу Адамара следующим образом:


Матрица Адамара Hn - это матрица размера 2n × 2n, для которой справедливо равенство

[math]H_n = H_{1} \otimes H_{n-1}[/math],
[math]\begin{align} H_1 = \frac{1}{\sqrt2} &\begin{pmatrix}\begin{array}{rr} 1 & 1\\ 1 & -1 \end{array}\end{pmatrix} \end{align}[/math],

где [math] \otimes [/math] представляет собой тензорное произведение.

Представим некоторые частные примеры матриц Адамара:

[math] H_0 = +1, [/math]
[math] H_1 = \frac{1}{\sqrt2} \begin{pmatrix}\begin{array}{rr} 1 & 1\\ 1 & -1 \end{array}\end{pmatrix} [/math],
[math] H_2 = \frac{1}{2} \begin{pmatrix}\begin{array}{rrrr} 1 & 1 & 1 & 1\\ 1 & -1 & 1 & -1\\ 1 & 1 & -1 & -1\\ 1 & -1 & -1 & 1 \end{array}\end{pmatrix} [/math],
[math] H_3 = \frac{1}{2^{\frac{3}{2}}} \begin{pmatrix}\begin{array}{rrrrrrrr} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\\ 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1\\ 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1\\ 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1\\ 1 & 1 & 1 & -1 & -1 & -1 & -1 & -1\\ 1 & -1 & 1 & 1 & -1 & 1 & -1 & 1\\ 1 & 1 & -1 & 1 & -1 & -1 & 1 & 1\\ 1 & -1 & -1 & -1 & -1 & 1 & 1 & -1\\ \end{array}\end{pmatrix} [/math].

1.2 Математическое описание алгоритма

Основой алгоритма является тот факт, что любую матрицу Адамара [math]H_n[/math] размера [math]2^n\times 2^n[/math] можно вычислить поэлементно[3][4]:

[math]h_{k,l} = \frac{1}{2^\frac{n}{2}} (-1)^{\sum_j k_j l_j}[/math],

где kj и lj коэффициенты двоичного разложения чисел k и l (1 или 0):

[math]k = \sum^{n}_{i=0} {k_i 2^i} = k_{n} 2^{n} + k_{n-1} 2^{n-1} + \cdots + k_1 2 + k_0[/math]

и

[math]l = \sum^{n}_{i=0} {l_i 2^i} = l_{n} 2^{n} + l_{n-1} 2^{n-1} + \cdots + l_1 2 + l_0[/math].

Помимо этой формулы чаще всего используется заполнение по определению. В связи с трудностями распараллеливания и постоянного выделения памяти при каждом шаге рекурсивного вызова этого метода, был выбран предыдущий способ вычисления.

1.3 Вычислительное ядро алгоритма

Вычислительное ядро составляют вычисления элементов матрицы [math]h_{k,l} = \frac{1}{2^\frac{n}{2}} (-1)^{\sum_j k_j l_j}[/math].

1.4 Макроструктура алгоритма

Основную часть метода составляют вычисления значений степени -1 для каждого элемента:

[math]\sum_{j=0}^n k_j l_j[/math].

Как видно по формуле, получаемое значение равна количеству единиц в двоичной записи результата побитового умножения k и l. Существует эффективный метод вычисления количества единиц , сложность которого равна m операций вычитания и m операций побитового умножения, где m-искомое количество единиц.

1.5 Схема реализации последовательного алгоритма

Последовательность исполнения метода следующая:

1. Побитовое умножение [math]k\&l[/math];

2. Вычисление количества единиц двоичной записи;

3. Определение знака элемента по степени.

1.6 Последовательная сложность алгоритма

Для построения матрицы Адамара порядка [math]N=2^n[/math] в первом шаге потребуется [math]N^2[/math] побитовых умножений k&l. Во втором шаге, как говорилось выше, сложность метода вычисления количества единиц числа в двоичном представлении равна удвоенному количеству единиц. В наихудшем случае сложность равна [math]2log_2N[/math], при k=l=N-1, а в наилучшем 0. Для нахождения степени всех элементов матрицы потребуются [math] 2N^2\left[\frac{log_2N}{4}\right][/math] операций. В третьем шаге для определения знака потребуется [math]N^2[/math] операций, то есть сложность алгоритма [math] T(n) = 2\,(1+\left[\frac{n}{4}\right])\,2^{2n}. [/math]

1.7 Информационный граф

На рисунке ниже изображен информационный граф [5] алгоритма.

  • [math]k\&l[/math] - операция побитового умножения, где [math]k[/math] и [math]l[/math] соответствующие координаты элемента [math]h_{kl}[/math];
  • OP - вычисление количества единиц числа в двоичной системе. Состоит из последовательного применения операций вычитания и побитового умножения;
  • SGN - определение знака соответствующего элемента. Если результат предыдущего шага четное, то знак положительный, иначе отрицательный.
Рисунок 1. Граф алгоритма.
Рисунок 2. Граф OP.

1.8 Ресурс параллелизма алгоритма

Для построения матрицы порядка [math]N=2^n[/math] требуется последовательно выполнить следующие шаги:

  • [math]N^2[/math] вычислений побитового умножения,
  • для каждого элемента от [math]2[/math] до [math]2n[/math] операций вычитания и побитового умножения, в зависимости от результата предыдущего шага,
  • [math]N^2[/math] для определения знака значения элемента.

Таким образом для построения необходимы лишь простые операции вычитания и побитового умножения выполняемые с целыми положительными числами. Стоит заметить что вычисления для каждого элемента не зависят друг от друга. Также можно воспользоваться либо симметричностью матрицы Адамара либо закономерностью областей показанная в пункте 1.1. Таким образом, основной вклад в высотe ЯПФ вносит операция вычисления количества единиц. Ширина ЯПФ будет равна [math]O(2^{2n})[/math].

1.9 Входные и выходные данные алгоритма

Входные данные: натуральное число [math] n \in \N [/math] - размерность матрицы Адамара [math]H_n[/math].

Объём входных данных: 1 (натуральное число [math] n [/math]).

Выходные данные: матрица Адамара [math]H_n[/math] размера [math]2^n\times 2^n[/math] (элементы [math]h_{ij}[/math]).

Объём выходных данных: [math]2^{2n}[/math], где [math] n [/math] - размерность матрицы Адамара. Стоит заметить, что в силу симметричности или самого определения матрицы Адамара, достаточно хранить не все элементы матрицы, а только их часть.

1.10 Свойства алгоритма

  • Соотношение последовательной и параллельной сложности:

Одним из трудных мест параллельной реализации является правильный выбор количества процессов. Рассматривается некоторое фиксированное число процессов [math]P\in \mathbb{N}[/math]. Считается, что каждый процесс P обрабатывает не более чем [math]\left[\frac{2^{2n}}{P}\right]\geq 1[/math] элементов. Тогда качественная формула может быть записана таким образом: [math]T(n,P)=2\,(1+\left[ \frac{n}{4} \right])\,\frac{2^{2n}}{P}[/math].

Неравенство [math]\left[\frac{2^{2n}}{P}\right]\geq 1[/math] можно переписать, как [math]log_2\,\sqrt{P}\leq n[/math].

Легко увидеть, что минимум функции T(n,P) будет при максимально возможном P : [math]log_2\,\sqrt{P}\leq n[/math]. Такое P будет оптимальным числом процессов для алгоритма. В частности, для [math]P=2^p,\,p\in\mathbb{N}[/math] оптимальное [math]P = 2^{2n}[/math].

[math]\frac{T(n)}{T(n,P)}=P[/math].

То есть, отношение последовательной и параллельной сложности будет линейно зависеть от [math]P[/math];

  • Вычислительная мощность алгоритма построения матрицы Адамара, как отношение числа операций к суммарному объему входных и выходных данных:
[math]\,\frac{2^{2n}(2+[\frac{n}{4}])}{1+2^{2n}}\left( \sim [\frac{n}{4}],\,n\to+\infty \right)[/math];
  • Алгоритм построения матрицы Адамара является не детерминированным, так как число операций меняется в зависимости от входных данных (числа n, которое формирует матрицу размера 2n × 2n);
  • Степень исхода вершины информационного графа равна 1;
  • Алгоритм построения матрицы Адамара является сбалансированным. Так как количество вершин на разных процессорах одинаково, то алгоритм является сбалансированным по числу операций на каждом процессоре.

2 ЧАСТЬ Программная реализация алгоритма

2.1 Особенности реализации последовательного алгоритма

В простейшем варианте генерацию матрицы Адамара для нашего алгоритма можно записать так:

void adamar(int** H, int n) // N = 2^n - размерность матрицы
{     
    int i,j,N;
    float h;
    h = pow(1/2,n/2); // h - нормализующий множитель
    N = pow(2,n);

    for(i=0;i<N;++i) 
    {
	for(j=0;j<N;++j)
	{
		ij = i & j;
    		for (l=0;ij;++l) ij&=ij-1; // l - количество единиц бинарного представления ij
		if(l%2==0) H[i][j] = h;
		else H[i][j] = -h;
	}
    }
}

Также существует рекурсивная реализация метода построения матрицы Адамара

void adamar_recursion(int** H, int N, int i, int j, int h) // h - нормализующий множитель
{
    if(n==1) H[i][j] = h;
    else
    {
        adamar(H, N/2, i, j, h);
        adamar(H, N/2, i, N/2+j, h);
        adamar(H, N/2, N/2+i, j, h);
        adamar(H, N/2, N/2+i, N/2+j, -h);
    }
}

Или эквивалентный безрекурсивный вариант:

void adamar_not_recursion(int** H, int n) // N = 2^n - размерность матрицы
{     
    int i,j,N;
    float h;
    h = pow(1/2,n/2);
    N = pow(2,n);
    k=2;
    H[0][0] = h;
	
    while(k<=N)
    {
	for (i=0; i<k; ++i)
	{
		for (j=0; j<k; ++j)
		{
			if (i<k/2 && j<k/2)
			{
			}
			else
			{
				if(i>=k/2 && j>=k/2)
				{
					H[i][j] = -(H[i-k/2][j-k/2]);
				}
				else
				{
					if (i>j)
					{
						H[i][j] = H[i-k/2][j];
					}
					else
					{
						H[i][j] = H[i][j-k/2];
					}
				}
			}
		}
	}
		
        k=k*2;
    }
}

Для данного случая, рекурсия является менее эффективной для генерации матрицы Адамара (Хабрахабр. О бедной рекурсии замолвите слово, или всё, что вы не знали и не хотите о ней знать.). С точки зрения последовательной реализации, генерация матрицы Адамара с помощью adamar_not_recursion будет выигрывать у adamar, так как adamar_not_recursion будет выполнять меньшее количество операций. С точки зрения параллельной реализации adamar имеет 100% парализацию и при определенных условиях будет выигрывать по времени у распараллелинной adamar_not_recursion (пусть в adamar и будет выполняться большее количество операций, но они являются битовыми операциями).

2.2 Локальность данных и вычислений

2.3 Возможные способы и особенности параллельной реализации алгоритма

2.4 Масштабируемость алгоритма и его реализации

Исследование проводилось на суперкомпьютере "Blue Gene".

Набор и границы значений изменяемых параметров запуска реализации алгоритма:

  • число процессоров [1, 2, 4, 8,..., 1024] ;
  • размер матрицы [2, 4, 8,..., 2048].

В результате проведённых экспериментов был получен следующий диапазон эффективности реализации алгоритма:

  • минимальная эффективность реализации 0.0121%;
  • максимальная эффективность реализации 3.3003%.

На следующих рисунках приведены графики производительности и эффективности выбранной реализации построение матрицы Адамара в зависимости от изменяемых параметров запуска.

Рис.5 Изменение производительности в зависимости от числа процессоров и размера матрицы.
Рис.5 Изменение эффективности в зависимости от числа процессоров и размера матрицы.

Построим оценки масштабируемости выбранной реализации:

  • При увеличении числа процессов производительность на рассмотренной области изменений параметров запуска увеличивается практически линейно. В следствии этого эффективность реализации, как видно по графику, перестает изменяться при увеличении числа процессоров и равна примерно 1,7%.
  • При увеличении размера матрицы производительность на рассмотренной области изменений параметров запуска увеличивается логарифмически. Это связанно с тем, что количество операций зависит от количества единиц после бинарного произведения. Поэтому наиболее влияет порядок степени [math]n[/math] размера матрицы [math]N=2^{n}[/math]. При увеличении размера матрицы эффективность также увеличивается, но скорость возрастания уменьшается.

По двум направлениям: При рассмотрении увеличения как вычислительной сложности, так и числа процессов на всей рассмотренной области значений эффективность увеличивается, однако скорость увеличения эффективности небольшая.

2.5 Динамические характеристики и эффективность реализации алгоритма

2.6 Выводы для классов архитектур

2.7 Существующие реализации алгоритма

Примеры вычислительных пакетов, содержащих функции генерации матриц Адамара:

  1. MATLAB;
  2. WOLFRAM;
  3. Python;
  4. Octave.

Стоит отметить, что во многих вычислительных пакетах встроена операция тензорного произведения матриц, которая позволяет строить матрицу Адамара по определению. Этот факт позволяет использовать матрицу Адамара в этих вычислительных пакетах:

  1. MAPLE;
  2. MATCATH.

3 Литература

  1. Мак-Вильямс Ф.Дж., Слоэн Н.Дж.А. Теория кодов, исправляющих ошибки: Пер. с англ. — М: Связь, 1979. — 744 с.
  2. Кронберг, Ю.И. Ожигов, А.Ю. Чернявский — Алгебраический аппарат квантовой информатики 2
  3. 3,0 3,1 Kunz H.O.. On the Equivalence Between One-Dimensional Discrete Walsh-Hadamard and Multidimensional Discrete Fourier Transforms. IEEE Transactions on Computers. 28 (3): 267–8. doi:10.1109/TC.1979.1675334
  4. 4,0 4,1 Википедия – свободная энциклопедия [Электронный ресурс]. - https://en.wikipedia.org/wiki/Hadamard_transform. - (дата обращения: 15.10.2016).
  5. Воеводин В.В.. Воеводин Вл.В. Параллельные вычисления. - СПб.: БХВ-Петербург, 2002. - 608 с.