Нахождение частных сумм элементов массива сдваиванием: различия между версиями

Материал из Алговики
Перейти к навигации Перейти к поиску
[непроверенная версия][непроверенная версия]
Строка 28: Строка 28:
 
=== Описание схемы реализации последовательного алгоритма ===
 
=== Описание схемы реализации последовательного алгоритма ===
  
В своём чистом виде суммирование сдваиванием не используют при последовательной реализации, поскольку кроме усложнения общей схемы алгоритма и резкого роста потребности в памяти, нужной для хранения промежуточных данных, сам по себе алгоритм содержит подавляющее большинство [[%D0%93%D0%BB%D0%BE%D1%81%D1%81%D0%B0%D1%80%D0%B8%D0%B9#.D0.98.D0.B7.D0.B1.D1.8B.D1.82.D0.BE.D1.87.D0.BD.D1.8B.D0.B5_.D0.B2.D1.8B.D1.87.D0.B8.D1.81.D0.BB.D0.B5.D0.BD.D0.B8.D1.8F|избыточных вычислений]].
+
В описанном виде суммирование сдваиванием не используют при последовательной реализации, поскольку кроме усложнения общей схемы алгоритма и резкого роста потребности в памяти, нужной для хранения промежуточных данных, сам по себе алгоритм содержит подавляющее большинство [[%D0%93%D0%BB%D0%BE%D1%81%D1%81%D0%B0%D1%80%D0%B8%D0%B9#.D0.98.D0.B7.D0.B1.D1.8B.D1.82.D0.BE.D1.87.D0.BD.D1.8B.D0.B5_.D0.B2.D1.8B.D1.87.D0.B8.D1.81.D0.BB.D0.B5.D0.BD.D0.B8.D1.8F|избыточных вычислений]]: по сравнению с последовательным алгоритмом нахождения частных сумм количество операций больше в <math>\frac{1}{2} log_2 n</math> раз.
  
 
=== Последовательная сложность алгоритма ===
 
=== Последовательная сложность алгоритма ===
  
Для вычисления суммы массива, состоящего из <math>N</math> элементов, при любых разложениях <math>N</math> на пары суть алгоритма сводится к простому переставлению скобок в формуле суммирования, и количество операций неизменно и равно <math>N - 1</math>. Поэтому алгоритм должен быть отнесён к алгоритмам ''линейной сложности'' по количеству последовательных операций.
+
Для вычисления суммы массива, состоящего из <math>n</math> элементов, количество операций равно <math>\frac{n}{2} log_2 n</math>. Поэтому алгоритм должен быть отнесён к алгоритмам ''линейно-логарифмической сложности'' по количеству последовательных операций.
  
 
=== Информационный граф ===
 
=== Информационный граф ===
 
Опишем граф алгоритма в виде рисунка. В данном случае выполнено суммирование 16 элементов массива.
 
Вершины , соответствующие входным данным - даны синим цветом , выходным данным - красным цветом.
 
  
 
=== Описание ресурса параллелизма алгоритма ===
 
=== Описание ресурса параллелизма алгоритма ===
  
Для суммирования массива порядка <math>n</math> методом сдваивания в параллельном варианте требуется последовательно выполнить <math>\lceil \log_2 n \rceil</math> ярусов с убывающим (от <math>\frac{n}{2}</math> до <math>1</math>) количеством операций суммирования.
+
Для вычисления частичных сумм массива порядка <math>n</math> методом сдваивания в параллельном варианте требуется последовательно выполнить <math>\lceil \log_2 n \rceil</math> ярусов с одинаковым (<math>\frac{n}{2}</math>) количеством операций суммирования.
 
При классификации по высоте ЯПФ, таким образом, метод сдваивания относится к алгоритмам с ''логарифмической сложностью''. При классификации по ширине ЯПФ его сложность будет ''линейной''.
 
При классификации по высоте ЯПФ, таким образом, метод сдваивания относится к алгоритмам с ''логарифмической сложностью''. При классификации по ширине ЯПФ его сложность будет ''линейной''.
  
Строка 50: Строка 47:
 
Дополнительные ограничения: отсутствуют.
 
Дополнительные ограничения: отсутствуют.
  
Объём входных данных: <nowiki/><math>N</math>.  
+
Объём входных данных: <nowiki/><math>n</math>.  
  
Выходные данные: сумма элементов массива.
+
Выходные данные: все частичные суммы первых <math>i</math> элементов массива, где <math>i</math> принимает все значения от <math>1</math> до <math>n</math>.
  
Объём выходных данных: один скаляр.
+
Объём выходных данных: <math>n</math>.
  
 
=== Свойства алгоритма ===
 
=== Свойства алгоритма ===
  
Соотношение последовательной и параллельной сложности в случае неограниченных ресурсов, как хорошо видно, является <math>\frac{n}{\log_2 n}</math> (отношение линейной к логарифмической). При этом вычислительная мощность алгоритма, как отношение числа операций к суммарному объему входных и выходных данных — всего-навсего ''1 (входных и выходных данных столько же, сколько операций)''. При этом алгоритм полностью детерминирован. Дуги информационного графа нелокальны, от яруса к ярусу наблюдается показательный рост их длины, при любом размещении вершин графа.
+
Соотношение последовательной и параллельной сложности в случае неограниченных ресурсов, как хорошо видно, является <math>\frac{n}{2}</math> (отношение линейно-логарифмической к логарифмической). При этом вычислительная мощность алгоритма, как отношение числа операций к суммарному объему входных и выходных данных — логарифмическая :<math>\frac{1}{2} log_2 n</math>. Это, однако обусловлено избыточностью вычислений. При этом алгоритм полностью детерминирован. Дуги информационного графа нелокальны, от яруса к ярусу наблюдается показательный рост их длины, при любом размещении вершин графа.
  
 
== Программная реализация ==
 
== Программная реализация ==

Версия 16:17, 6 апреля 2015

Основные авторы описания: А.В.Фролов

Содержание

1 Описание свойств и структуры алгоритма

1.1 Общее описание алгоритма

Метод сдваивания используется в качестве быстрого варианта вычисления длинных последовательностей ассоциативных операций (например, массового получения частичных сумм). Получил распространение благодаря наименьшей из возможных высоте алгоритма.

1.2 Математическое описание

Исходные данные: одномерный массив n чисел.

Вычисляемые данные: частичные суммы первых i элементов массива, где i принимает все значения от 1 до n.

Формулы метода: элементы на первом этапе алгоритма разбиваются на пары. В каждой из пар находится сумма составляющих её соседних элементов. На следующем этапе на пары разбиваются уже эти суммы (и те элементы, которые не вошли в уже вычисленные суммы), и т. д. По нахождению тех частных сумм, где i является степенью двойки, формулы повторяют Нахождение суммы элементов массива сдваиванием. Однако, кроме этого, для каждой пары (например, для нахождения суммы x_i+...+x_{i+k} и x_{i+k+1} +...+ x_{i+2k})дополнительно вычисляются все частные суммы от x_i+...+x_{i+k+1} до x_i+...+x_{i+2k-1}.

1.3 Вычислительное ядро алгоритма

Вычислительное ядро последовательно-параллельного метода суммирования можно составить из элементарных бинарных (всего \frac{n}{2} log_2 n) вычислений сумм.

1.4 Макроструктура алгоритма

Как уже записано в описании ядра алгоритма, основную часть метода составляют элементарные бинарные (всего \frac{n}{2} log_2 n) вычисления сумм.

1.5 Описание схемы реализации последовательного алгоритма

В описанном виде суммирование сдваиванием не используют при последовательной реализации, поскольку кроме усложнения общей схемы алгоритма и резкого роста потребности в памяти, нужной для хранения промежуточных данных, сам по себе алгоритм содержит подавляющее большинство избыточных вычислений: по сравнению с последовательным алгоритмом нахождения частных сумм количество операций больше в \frac{1}{2} log_2 n раз.

1.6 Последовательная сложность алгоритма

Для вычисления суммы массива, состоящего из n элементов, количество операций равно \frac{n}{2} log_2 n. Поэтому алгоритм должен быть отнесён к алгоритмам линейно-логарифмической сложности по количеству последовательных операций.

1.7 Информационный граф

1.8 Описание ресурса параллелизма алгоритма

Для вычисления частичных сумм массива порядка n методом сдваивания в параллельном варианте требуется последовательно выполнить \lceil \log_2 n \rceil ярусов с одинаковым (\frac{n}{2}) количеством операций суммирования. При классификации по высоте ЯПФ, таким образом, метод сдваивания относится к алгоритмам с логарифмической сложностью. При классификации по ширине ЯПФ его сложность будет линейной.

1.9 Описание входных и выходных данных

Входные данные: массив x (элементы x_i).

Дополнительные ограничения: отсутствуют.

Объём входных данных: n.

Выходные данные: все частичные суммы первых i элементов массива, где i принимает все значения от 1 до n.

Объём выходных данных: n.

1.10 Свойства алгоритма

Соотношение последовательной и параллельной сложности в случае неограниченных ресурсов, как хорошо видно, является \frac{n}{2} (отношение линейно-логарифмической к логарифмической). При этом вычислительная мощность алгоритма, как отношение числа операций к суммарному объему входных и выходных данных — логарифмическая :\frac{1}{2} log_2 n. Это, однако обусловлено избыточностью вычислений. При этом алгоритм полностью детерминирован. Дуги информационного графа нелокальны, от яруса к ярусу наблюдается показательный рост их длины, при любом размещении вершин графа.

2 Программная реализация

2.1 Особенности реализации последовательного алгоритма

2.2 Описание локальности данных и вычислений

2.2.1 Описание локальности реализации алгоритма

2.2.1.1 Описание структуры обращений в память и качественная оценка локальности
2.2.1.2 Количественная оценка локальности

2.3 Возможные способы и особенности реализации параллельного алгоритма

2.4 Масштабируемость алгоритма и его реализации

2.4.1 Описание масштабируемости алгоритма

2.4.2 Описание масштабируемости реализации алгоритма

2.5 Динамические характеристики и эффективность реализации алгоритма

2.6 Выводы для классов архитектур

2.7 Существующие реализации алгоритма