Уровень алгоритма

Участник:Ivanov.kir.m/Быстрое дискретное преобразование Фурье: различия между версиями

Материал из Алговики
Перейти к навигации Перейти к поиску
Строка 43: Строка 43:
  
 
== Вычислительное ядро алгоритма ==
 
== Вычислительное ядро алгоритма ==
В случае размерности входа равной степени двойки, вычислительным ядром алгоритма является, так называемая, "бабочка". В простейшем случае "бабочка" представляет из себя двухточечное преобразование. Рассмотрим этот случай:
+
В случае размерности входа равной степени двойки, вычислительным ядром алгоритма является, так называемая, "''бабочка''". В простейшем случае "''бабочка''" представляет из себя двухточечное преобразование. Рассмотрим этот случай:
  
 
На вход алгоритму подается двухэлементный вектор ‒ <math> v = (v[0], v[1]) </math>. Тогда для вычисления будут происходить по следующим формулам:
 
На вход алгоритму подается двухэлементный вектор ‒ <math> v = (v[0], v[1]) </math>. Тогда для вычисления будут происходить по следующим формулам:
Строка 53: Строка 53:
 
Данный процесс удобно изобразить с помощью следующей схемы:
 
Данный процесс удобно изобразить с помощью следующей схемы:
  
[[file:Fftbutterfly.png | Рис. 1. "Бабочка" для двумерного входа ]]
+
[[file:Fftbutterfly.png | Рис. 1. "''Бабочка''" для двумерного входа ]]
  
Для 4-х элеметного вектора <math>v=(v[0],v[1],v[2],v[3])</math>, алгоритм строится похожим образом. Сначала создаются простейшие "бабочки", а потом их результаты соединяются с противоположеной "бабочкой":
+
Для 4-х элеметного вектора <math>v=(v[0],v[1],v[2],v[3])</math>, алгоритм строится похожим образом. Сначала создаются простейшие "''бабочки''", а потом их результаты соединяются с противоположеной "бабочкой":
  
 
<math>V[0]=v[0]+W_2^0 v[2]+W_4^0(v[1]+W_2^0 v[3])</math>
 
<math>V[0]=v[0]+W_2^0 v[2]+W_4^0(v[1]+W_2^0 v[3])</math>
Строка 67: Строка 67:
 
Схема в таком случае будет выглядеть следующим образом:
 
Схема в таком случае будет выглядеть следующим образом:
  
[[file:Fftbutterfly4.png| Рис. 2. "Бабочка" для четырёхмерного входа ]]
+
[[file:Fftbutterfly4.png| Рис. 2. "''Бабочка''" для четырёхмерного входа ]]
  
Для случая, когда вход не является степенью двойки, "бабочки" будут "несимментричными", но в остальном вычисления будут проходить схожим образом.
+
Для случая, когда вход не является степенью двойки, "''бабочки''" будут "''несимментричными''", но в остальном вычисления будут проходить схожим образом.
  
 
== Макроструктура алгоритма ==
 
== Макроструктура алгоритма ==

Версия 11:35, 24 сентября 2016


Алгоритм Кули-Тьюки одномерного преобразования Фурье для действительных чисел
Последовательный алгоритм
Последовательная сложность O (n \log n)
Объём входных данных n действительных чисел
Объём выходных данных \lfloor n/2 \rfloor+1 комплексных чисел
Параллельный алгоритм
Высота ярусно-параллельной формы O (\log n)
Ширина ярусно-параллельной формы n

Быстрое преобразование Фурье (БПФ, FFT) — алгоритм быстрого  вычисления дискретного преобразования Фурье (ДПФ). То есть, алгоритм вычисления за количество действий, меньшее чем O(N^{2}), требуемых для прямого (по формуле) вычисления ДПФ. Иногда под БПФ понимается один из быстрых алгоритмов, называемый алгоритмом прореживания по частоте/времени или алгоритмом по основанию 2, имеющий сложность O(N\log(N)). Cуществует несколько различных алгоритмов для вычисления ДПФ считающимся быстрым преобразование Фурье:

  • Алгоритм Кули-Тьюки [1]
  • Алгоритм Гуда-Томаса [2]
  • Алгоритм Бруна [3]
  • Алгоритм Блюштейна [4]

1 ЧАСТЬ. Свойства и структура алгоритмов

1.1 Общее описание алгоритма

Одним из вариантов быстрого преобразования Фурье для вектора действительных чисел с размерностью равной степени двойки является алгоритм Кули-Тьюки. Отличительной особенностью данного алгоритма является то, что он обходится без использования специфических приемов, использующихся именно для степеней четверки, восьмерки и т.п. Однако благодаря тому, что на вход данному алгоритму подается вектор чисто вещественных чисел, выходной вектор удовлетворяет эрмитовой избыточности (Hermitian redundancy) , т.е. out[i] является сопряженным с out[n-i]. Это обстоятельство позволяет достичь роста скорости и снижения затрат памяти примерно в 2 раза по сравнению с комплексным аналогом алгоритма.

1.2 Математическое описание алгоритма

Входные данные: вектор действительных чисел a = (a_1,a_2,...,a_n).

Выходные данные: вектор комплексных чисел b = (b_1,b_2,...,b_{\lfloor n/2 \rfloor+1}).

Замечание: В простейшем случае алгоритм Кули-Тьюки применяется к векторам размерности степени двойки, поэтому на практике вектора иной размерности часто дополнять до ближайшей степени двойки. Такой подход делает алгоритм Кули-Тьюки не самым эффективным алгоритмом БПФ, поскольку дополнение до степени двойки может сильно усложнить задачу.

1.3 Рекурсивное описание

Алгоритм:

  1. Входной вектор a = (a_1,a_2,...,a_n) преобразуется в матрицу A размера n_1 \times n_2 , где n=n_1 \cdot n_2 и n_1 \lt n_2

A = \begin{pmatrix} a_1 & a_2 & \cdots & a_{n_1} \\ a_{n_1+1} & a_{n_1} & \cdots & a_{2n_1} \\ \vdots & \vdots & \ddots & \vdots \\ a_{(n2-1)\cdot n1+1} & a_{(n2-1)\cdot n1+1} & \cdots & a_{n2\cdot n1} \end{pmatrix}

  1. К каждой строке полученной матрицы применяется дискретное преобразование Фурье порядка n_1
  2. Каждый элемент полученный после применения ДПФ умножается на поворотные множители exp (2 \pi i(m-1)(j-1)/n), где m - номер строки, а j - номер столбца
  3. Полученная после шагов 1-3 матрица A транспонируется
  4. К каждой строке матрицы A^T применяется ДПФ порядка n_2

Замечание: Как правило все поворотные множители вычисляются заранее и хранятся в специальном массиве.

1.4 Вычислительное ядро алгоритма

В случае размерности входа равной степени двойки, вычислительным ядром алгоритма является, так называемая, "бабочка". В простейшем случае "бабочка" представляет из себя двухточечное преобразование. Рассмотрим этот случай:

На вход алгоритму подается двухэлементный вектор ‒ v = (v[0], v[1]) . Тогда для вычисления будут происходить по следующим формулам:

V[0] = W_2^0 v[0] + W_2^0 v[1] = v[0] + W_2^0 v[1]

V[1] = W_2^0 v[0] + W_2^1 v[1] = v[0] + W_2^1 v[1]

Данный процесс удобно изобразить с помощью следующей схемы:

Рис. 1. "Бабочка" для двумерного входа

Для 4-х элеметного вектора v=(v[0],v[1],v[2],v[3]), алгоритм строится похожим образом. Сначала создаются простейшие "бабочки", а потом их результаты соединяются с противоположеной "бабочкой":

V[0]=v[0]+W_2^0 v[2]+W_4^0(v[1]+W_2^0 v[3])

V[1]=v[0]-W_2^0 v[2]+W_4^1(v[1]-W_2^0 v[3])

V[2]=v[0]+W_2^0 v[2]-W_4^0(v[1]+W_2^0 v[3])

V[3]=v[0]-W_2^0 v[2]-W_4^1(v[1]-W_2^0 v[3])

Схема в таком случае будет выглядеть следующим образом:

Рис. 2. "Бабочка" для четырёхмерного входа

Для случая, когда вход не является степенью двойки, "бабочки" будут "несимментричными", но в остальном вычисления будут проходить схожим образом.

1.5 Макроструктура алгоритма

1.6 Схема реализации последовательного алгоритма

1.7 Последовательная сложность алгоритма

1.8 Ресурс параллелизма алгоритма

1.9 Входные и выходные данные алгоритма

1.10 Свойства алгоритма

2 ЧАСТЬ. Программная реализация алгоритма

2.1 Масштабируемость алгоритма и его реализации

2.2 Существующие реализации алгоритма

3 Литература

[1] Википедия [Электронный ресурс]. Тема: Быстрое преобразование Фурье – Электрон. дан. – URL Быстрое преобразование Фурье (дата обращения 17.09.2016)