Участник:JuliaA/Алгоритм кластеризации с использованием представлений: различия между версиями

Материал из Алговики
Перейти к навигации Перейти к поиску
Строка 93: Строка 93:
  
 
= ЧАСТЬ. Программная реализация алгоритма =
 
= ЧАСТЬ. Программная реализация алгоритма =
 
 
== Особенности реализации последовательного алгоритма ==
 
 
 
== Локальность данных и вычислений ==
 
 
 
== Возможные способы и особенности параллельной реализации алгоритма ==
 
 
  
 
== Масштабируемость алгоритма и его реализации ==
 
== Масштабируемость алгоритма и его реализации ==
  
 
Данный раздел будет заполнен к 15 ноября.
 
Данный раздел будет заполнен к 15 ноября.
 
== Динамические характеристики и эффективность реализации алгоритма ==
 
 
 
== Выводы для классов архитектур ==
 
 
  
 
== Существующие реализации алгоритма ==
 
== Существующие реализации алгоритма ==

Версия 21:00, 15 октября 2016

Основные авторы описания: Ю.А. Антохина, С.А. Шатков

1 ЧАСТЬ. Свойства и структура алгоритмов

1.1 Общее описание алгоритма

Пусть дан набор точек и заданы правила определения расстояния между ними. Задача кластеризации сгруппировать эти точки в определенное число кластеров. Члены одного кластера похожи, а члены разных классов различны.

В алгоритме CURE применяется иерархическая кластеризация. Есть два подхода к иерархической кластеризации. В одном случае один большой кластер на каждом шаге разбивается на несколько, пока число кластеров не будет равно заданному заранее числу кластеров. В другом случае наоборот кластеры, состоящие каждый из одной точки объединяются в большие. Второй метод используется в CURE.

Результат кластеризации зависит от того, как будут представлены кластеры. Например, средним всех точек кластера, или всеми точками кластера. Применение среднего возможно только в евклидовом пространстве. А использование всех точек неустойчиво к случайным выбросам. В CURE используется другой метод: для каждого кластера выбираются точки представители. Выбирается постоянное число точек, которые будут представлять каждый кластер. Кластеры с наиболее похожими наборами репрезентативных точек объединяются на каждом шаге алгоритма.

За счет использования точек представителей алгоритм CURE устойчив к выбросам и может выделять кластеры сложной формы и различных размеров.

Описание шагов

Шаг 1. Если все данные использовать сразу как входные для CURE, то эффективность алгоритма будет низкая, а время выполнения большим. Поэтому на первом шаге мы случайным образом выбираем часть точек которые помещаются в память, затем группируем наиболее похожие с помощью иерархического метода. Дальше работаем с кластерами.

Шаг 2. Для каждого кластера выбираем c точек представителей, максимально удаленных друг от друга. Чисто c остается постоянным.

Шаг 3. Объединяем кластеры с наиболее похожими наборами точек представителей. Если не достигнуто нужное число кластеров, то перейти на шаг 2. Чтобы при объединении кластеров не выбирать каждый раз c точек представителей из всех точек, мы выбираем их только из 2c точек объединенных кластеров.

Выбранные точки сдвигаются на следующем шаге на \alpha к центроиду кластера. Алгоритм становится основанным на методе поиска центроида при \alpha = 1, и основанным на всех точках кластера при \alpha = 0.

Пример работы алгоритма для разных параметров \alpha.

1.2 Математическое описание алгоритма

Пусть дана матрица x \in R^{m\times n}, количество кластеров k, число точек представителей \alpha, параметр \delta, параметр \gamma.

m число точек для кластеризации, n размерность.

Шаг "Инициализация"

Выбираются \lceil \gamma m\rceil строк матрицы случайным образом. Например, можно использовать Алгоритм R.

В основной памяти выделяется куча соответствующего размера для размещения дерева, листьями которого являются выбранные строки, соединённые ребром с вершиной дерева.


Шаг "Кластеризация"


Шаг "Назначение представителей"


Шаг "Сдвиг представителей к центроиде"


Шаг "Присваивание"

1.3 Вычислительное ядро алгоритма

1.4 Макроструктура алгоритма

1.5 Схема реализации последовательного алгоритма

1.6 Последовательная сложность алгоритма

Максимальное время выполнения алгоритма O(n^2 logn). Для двумерного пространства временная сложность может быть O(n^2). Так что сложность алгоритма не хуже чем у центроидного. То есть при такой размерности входных данных CURE выполняется за полиномиальное время.

(ПОЯСНЕНИЯ, ЕСЛИ ЕСТЬ ВРЕМЯ)

1.7 Информационный граф

1.8 Ресурс параллелизма алгоритма

1.9 Входные и выходные данные алгоритма

Входные данные: матрица x \in R^{m\times n}, количество кластеров k, число точек представителей \alpha, параметр \delta, параметр \gamma.

m число точек для кластеризации, n размерность.

Параметр \delta для сжатия точек представления к центру кластера. В оригинальной статье авторы показывают что \delta от 0.2 до 0.7 помогает хорошо выявлять несферические кластеры и подавлять редкие выбросы.

Параметр \gamma задаёт какая часть от m точек будет использована при случайной выборке точек на шаге "Инициализация".

Число точек представителей выбирается в зависимости от данных. Если возможно появление кластеров сложной формы, то точек должно быть больше, чтобы выявить их форму. В оригинальной статье авторы показывают что уже при \alpha равном 10 достигается неплохая эффективность.

(ВЫХОДНЫЕ ДАННЫЕ??)

1.10 Свойства алгоритма

Алгоритм CURE выполняет иерархическую кластеризацию с использованием набора определяющих точек. Он действует только в евклидовом пространстве и предназначен для кластеризации очень больших наборов числовых данных.

Преимущества: выполняет кластеризацию на высоком уровне даже при наличии выбросов, выделяет кластеры сложной формы и различных размеров, обладает линейно зависимыми требованиями к месту хранения данных и квадратичную временную сложность для данных высокой размерности.

Недостатки: есть необходимость в задании пороговых значений и количества кластеров, работает только на числовых данных, эффективен только для данных низкой размерности

2 ЧАСТЬ. Программная реализация алгоритма

2.1 Масштабируемость алгоритма и его реализации

Данный раздел будет заполнен к 15 ноября.

2.2 Существующие реализации алгоритма

Последовательная реализация CURE-алгоритма для кластеризации для Python/C++ представлена в пакете: pyclustering.

Также существует параллельная реализация алгоритма, описанная в сборнике [3]. (ДОБАВИТЬ: ЧТО ПРЕДЛАГАЮТ СДЕЛАТЬ АВТОРЫ)

3 Литература

[1] Воеводин В.В., Воеводин Вл.В. Параллельные вычисления. - СПб.: БХВ-Петербург, 2002. - 608 с.

[2] Sudipto Guha (Stanford), Rajeev Rastogi (Bell Labs), Kyuseok Shim (Korea Institute of Technology). CURE: an efficient clustering algorithm for large databases. SIGMOD '98 Proceedings of the 1998 ACM SIGMOD international conference on Management of data, pp 73-84

[3] Panagiotis E. Hadjidoukas, Laurent Amsaleg. OpenMP Shared Memory Parallel Programming. Volume 4315 of the series Lecture Notes in Computer Science pp 289-299 Parallelization of a Hierarchical Data Clustering Algorithm Using OpenMP