Алгоритм Тарьяна поиска компонент двусвязности: различия между версиями

Материал из Алговики
Перейти к навигации Перейти к поиску
[непроверенная версия][непроверенная версия]
Строка 1: Строка 1:
== Свойства и структура алгоритмов ==
+
== Свойства и структура алгоритма ==
 
=== Общее описание алгоритма ===
 
=== Общее описание алгоритма ===
  
 
'''Алгоритм Тарьяна'''<ref>Tarjan, Robert. “Depth-First Search and Linear Graph Algorithms.” SIAM Journal on Computing 1, no. 2 (1972): 146–60.</ref> находит [[Связность в графах|компоненты двусвязности]] и шарниры неориентированного графа в процессе [[Поиск в глубину (DFS)|поиска в глубину]] за время <math>O(m)</math>.
 
'''Алгоритм Тарьяна'''<ref>Tarjan, Robert. “Depth-First Search and Linear Graph Algorithms.” SIAM Journal on Computing 1, no. 2 (1972): 146–60.</ref> находит [[Связность в графах|компоненты двусвязности]] и шарниры неориентированного графа в процессе [[Поиск в глубину (DFS)|поиска в глубину]] за время <math>O(m)</math>.
  
=== Математическое описание ===
+
=== Математическое описание алгоритма ===
 
=== Вычислительное ядро алгоритма ===
 
=== Вычислительное ядро алгоритма ===
 
=== Макроструктура алгоритма ===
 
=== Макроструктура алгоритма ===
=== Описание схемы реализации последовательного алгоритма ===
+
=== Схема реализации последовательного алгоритма ===
 
=== Последовательная сложность алгоритма ===
 
=== Последовательная сложность алгоритма ===
  
Строка 13: Строка 13:
  
 
=== Информационный граф ===
 
=== Информационный граф ===
=== Описание ресурса параллелизма алгоритма ===
+
=== Ресурс параллелизма алгоритма ===
  
 
Возможности параллелизации алгоритма Тарьяна сильно ограничены, поскольку он основан на [[Поиск в глубину (DFS)|поиске в глубину]]. Параллельный [[Алгоритм Тарьяна-Вишкина поиска компонент двусвязности|алгоритмом Тарьяна-Вишкина]]<ref>Tarjan, Robert Endre, and Uzi Vishkin. “An Efficient Parallel Biconnectivity Algorithm.” SIAM Journal on Computing 14, no. 4 (1985): 862–74.</ref> основан на тех же свойствах графа и может использовать любое остовное дерево.
 
Возможности параллелизации алгоритма Тарьяна сильно ограничены, поскольку он основан на [[Поиск в глубину (DFS)|поиске в глубину]]. Параллельный [[Алгоритм Тарьяна-Вишкина поиска компонент двусвязности|алгоритмом Тарьяна-Вишкина]]<ref>Tarjan, Robert Endre, and Uzi Vishkin. “An Efficient Parallel Biconnectivity Algorithm.” SIAM Journal on Computing 14, no. 4 (1985): 862–74.</ref> основан на тех же свойствах графа и может использовать любое остовное дерево.
  
=== Описание входных и выходных данных ===
+
=== Входные и выходные данные алгоритма ===
=== Свойства алгоритма===
+
=== Свойства алгоритма ===
== Программная реализация алгоритмов ==
+
 
 +
== Программная реализация алгоритма ==
 
=== Особенности реализации последовательного алгоритма ===
 
=== Особенности реализации последовательного алгоритма ===
=== Описание локальности данных и вычислений ===
+
=== Локальность данных и вычислений ===
=== Возможные способы и особенности реализации параллельного алгоритма ===
+
==== Локальность реализации алгоритма ====
 +
===== Структура обращений в память и качественная оценка локальности =====
 +
===== Количественная оценка локальности =====
 +
=== Возможные способы и особенности параллельной реализации алгоритма ===
 
=== Масштабируемость алгоритма и его реализации ===
 
=== Масштабируемость алгоритма и его реализации ===
 +
==== Масштабируемость алгоритма ====
 +
==== Масштабируемость реализации алгоритма ====
 
=== Динамические характеристики и эффективность реализации алгоритма ===
 
=== Динамические характеристики и эффективность реализации алгоритма ===
 
=== Выводы для классов архитектур ===
 
=== Выводы для классов архитектур ===
Строка 35: Строка 41:
  
 
<references />
 
<references />
 +
 +
[[Категория:Начатые статьи]]

Версия 14:26, 29 июля 2015

Содержание

1 Свойства и структура алгоритма

1.1 Общее описание алгоритма

Алгоритм Тарьяна[1] находит компоненты двусвязности и шарниры неориентированного графа в процессе поиска в глубину за время O(m).

1.2 Математическое описание алгоритма

1.3 Вычислительное ядро алгоритма

1.4 Макроструктура алгоритма

1.5 Схема реализации последовательного алгоритма

1.6 Последовательная сложность алгоритма

Последовательная сложность алгоритма Тарьяна составляет O(m), так как в процессе поиска в ширину выполняется ограниченное количество операций для каждой вершины и каждого ребра.

1.7 Информационный граф

1.8 Ресурс параллелизма алгоритма

Возможности параллелизации алгоритма Тарьяна сильно ограничены, поскольку он основан на поиске в глубину. Параллельный алгоритмом Тарьяна-Вишкина[2] основан на тех же свойствах графа и может использовать любое остовное дерево.

1.9 Входные и выходные данные алгоритма

1.10 Свойства алгоритма

2 Программная реализация алгоритма

2.1 Особенности реализации последовательного алгоритма

2.2 Локальность данных и вычислений

2.2.1 Локальность реализации алгоритма

2.2.1.1 Структура обращений в память и качественная оценка локальности
2.2.1.2 Количественная оценка локальности

2.3 Возможные способы и особенности параллельной реализации алгоритма

2.4 Масштабируемость алгоритма и его реализации

2.4.1 Масштабируемость алгоритма

2.4.2 Масштабируемость реализации алгоритма

2.5 Динамические характеристики и эффективность реализации алгоритма

2.6 Выводы для классов архитектур

2.7 Существующие реализации алгоритма

3 Литература

  1. Tarjan, Robert. “Depth-First Search and Linear Graph Algorithms.” SIAM Journal on Computing 1, no. 2 (1972): 146–60.
  2. Tarjan, Robert Endre, and Uzi Vishkin. “An Efficient Parallel Biconnectivity Algorithm.” SIAM Journal on Computing 14, no. 4 (1985): 862–74.