Участник:ЕкатеринаКозырева/Алгоритм динамической иерархической кластеризации CHAMELEON
Алгоритм динамической иерархической кластеризации CHAMELEON | |
Последовательный алгоритм | |
Последовательная сложность | O(nm + n log n + m^2 log m) |
Объём входных данных | \frac{n (n - 1)}{2} |
Объём выходных данных | n |
Параллельный алгоритм | |
Высота ярусно-параллельной формы | |
Ширина ярусно-параллельной формы |
Автор описания Е.А.Козырева
Содержание
- 1 часть. Свойства и структура алгоритмов
- 1.1 Общее описание алгоритма
- 1.2 Математическое описание алгоритма
- 1.3 Вычислительное ядро алгоритма
- 1.4 Макроструктура алгоритма
- 1.5 Схема реализации последовательного алгоритма
- 1.6 Последовательная сложность алгоритма
- 1.7 Информационный граф
- 1.8 Ресурс параллелизма алгоритма
- 1.9 Входные и выходные данные алгоритма
- 1.10 Свойства алгоритма
- 2 часть. Программная реализация алгоритма
- 3 Литература
1 часть. Свойства и структура алгоритмов
1.1 Общее описание алгоритма
Алгоритм CHAMELEON был предложен в 1999 году тремя учеными из университета Миннесоты – George Karypis, Eui-Hong (Sam) Han и Vipin Kumar[1].
Предназначен для решения задач кластеризации. Кластеризация (или кластерный анализ) — это задача разбиения множества объектов на группы, называемые кластерами. Внутри каждой группы должны оказаться «похожие» объекты, а объекты разных группы должны быть как можно более отличны.
CHAMELEON - это агломеративный иерархический алгоритм кластеризации, ключевой особенностью которого является то, что он учитывает и взаимную связность, и сходство при определении наиболее похожей пары подкластеров, основываясь на динамической модели. Это означает, что в процессе кластеризации два кластера объединяются, только если их относительная взаимная связность и относительное взаимное сходство являются высокими по отношению к внутренней взаимосвязанности кластеров и близости элементов внутри кластеров. Кроме того, Хамелеон использует подход для моделирования степени взаимосвязанности и близости между каждой парой кластеров, который учитывает внутренние характеристики самих кластеров. Таким образом, он может автоматически адаптироваться к внутренним характеристикам объединяемых кластеров.
CHAMELEON находит кластеры в наборе данных с помощью трехфазного алгоритма. На первой фазе происходит построение графа, путём добавления рёбер по принципу k ближайших соседей. На второй фазе CHAMELEON группирует полученные элементы в множество относительно небольших подкластеров. Во время третьей фазы применяется агломеративный иерархический алгоритм кластеризации, с помощью которого находятся естесственные кластеры путем многократного объединения подкластеров, полученных на прошлом этапе.
1.2 Математическое описание алгоритма
Исходные данные:
- Множество из n точек V= {v_{ij}} в метрическом пространстве, которое задано симметрической матрицей расстояний A размера n\times n.
- k - количество ближайших соседей для вершин, k \in N, k \leq n.
- l - наименьшее число вершин, которое может содержать наибольший подграф на 2-м этапе, l \in N, l \leq n.
Обозначения:
- G = (V, E) - граф, полученный путём соединения каждой точки с её k ближайшими соседями.
- K= \{K_{i}\} - разбиение множества V на набор попарно непересекающихся связных подмножеств, полученное в результате выполнения второй фазы алгоритма.
- G_{2} = (K, E_{2}) - взвешенный граф, вершинами которого являются получившиеся подграфы, а ребрами - количество ребер исходного графа, соединяющих соответствующие подграфы.
- C = \{C_{i}\} - итоговое разбиение множества вершин графа G_{2} на набор кластеров.
Вспомогательные понятия
- EC_{(C_{i},C_{j})} - абсолютная взаимная связность пары кластеров C_{i}, C{j}. Определяется как сумма весов ребер, соединяющих вершины, принадлежащие C{i} c вершинами из C{j}. Внутренняя связность EC_{(C_{i},C_{i})} вычисляется как сумма ребер, входящих в разделитель, разбивающий C{i} на два равных подграфа.
- RI_{(C_{i},C_{j})} = \frac{|EC_{(C_{i},C_{j})}|}{(|EC_{C_{i}}|+|EC_{C_{j}}|)/2} - относительная взаимная связность пары кластеров C_{i}, C{j}
- S_{EC_{(C_{i},C_{j})}} - абсолютное взаимное сходство пары кластеров C_{i}, C{j}. Подсчитывается как среднее сходство между соединенными вершинами, принадлежащими C{i} и C{j} соответственно. Соединения обусловлены разбиением общего графа, полученного на первом этапе алгоритма.
- RC_{(C_{i},C_{j})}= \frac{S_{EC_{(C_{i},C_{j})}}}{\frac{|C_{i}|}{|C_{i}+C_{j}|}*S_{EC_{(C_{i})}}+\frac{|C_{i}|}{|C_{i}+C_{j}|}*S_{EC_{(C_{j})}}} - относительное взаимное сходство пары кластеров C_{i}, C{j}. Определяется как абсолютное сходство между этой парой кластеров, нормализованное с учетом их внутреннего сходства.
Первый этап
На первом этапе, согласно графо-ориентированному подходу, происходит построение графа G = (V, E) на матрице сходства объектов по принципу k ближайших соседей. Две вершины такого графа соединяет ребро, если объект, соответствующий любой из этих вершин попадает в число k наиболее близких объектов для объекта, соответствующего другой вершине из данной пары.
Второй этап
Алгоритм разделяет полученный граф на множество сравнительно малых подграфов K= \{K_{i}\}. Разделение происходит последовательно. На каждом шаге выбирается подграф, содержащий наибольшее число вершин. Этот граф разделяется на два подграфа так, что разделитель ребер графа минимален и каждый из получаемых подграфов содержит не менее 25 % вершин исходного графа. Процесс разделения останавливается, когда наибольший подграф содержит меньше некоторого заданного числа вершин. Обычно величина этого параметра задается равной значению от 1 до 5 % от числа объектов. Полученное множество связных графов считается множеством начальных кластеров, на котором требуется провести последовательное иерархическое объединение.
Третий этап
Третий этап заключается в итеративном преобразовании множества подграфов K= \{K_{i}\} в множество кластеров C = \{C_{i}\}. Алгоритм осуществляет агломеративную иерархическую кластеризацию на основании показателей EC_{(C_{i},C_{j})}, S_{EC_{(C_{i},C_{j})}}, RI_{(C_{i},C_{j})} , RC_{(C_{i},C_{j})}. Существует две стратегии анализа показателей сходства. Первая подразумевает наличие некоторых пороговых значений T_{RI} и T_{RC}. В соответствии с этой стратегией, алгоритм для каждого кластера C_{i} проверяет, отвечают ли смежные (наиболее близкие) ему кластеры условиям:
- RI_{(C_{i},C_{j})} \geqslant T_{RI}
- RC_{(C_{i},C_{j})} \geqslant T_{RC}
Если более одного смежного кластера отвечает этим условиям, то алгоритм выбирает для объединения наиболее связный кластер (граф), то есть такой кластер C_{j}, с которым у кластера C_{i} получается наибольшая абсолютная взаимная связность. По завершению прохода по всем кластерам, созданные таким образом пары объединяются. Параметры T_{RI} и T_{RC} могут использоваться для изменения характеристик получаемых кластеров.
Вторая стратегия заключается в использовании специальной функции, объединяющей понятия относительной взаимной связности и относительного взаимного сходства. На каждом шаге выбираются те кластеры для объединения, которые максимизируют эту функцию:
RI_{(C_{i},C_{j})}*RC_{(C_{i},C_{j})}^\alpha,
где \alpha выбирается пользователем. Если \alpha \gt 1 , то алгоритм придает большее значение относительному взаимному сходству, а если \alpha \lt 1 , то большее значение имеет относительная взаимная связность.
Вычисляемые данные:
U = (u_1, u_2, ..., u_n) - n-мерный вектор, где u_i \in N_{[C]} - порядковый номер кластера, к которому принадлежит вершина i исходного множества V.
1.3 Вычислительное ядро алгоритма
Алгоритм имеет три вычислительных ядра, по одному на каждый этап.
На первом этапе вычислительным ядром является процесс нахождения k ближайших соседей для каждой вершины, который заключается в анализе матрицы расстояний.
На втором этапе вычислительным ядром является процесс поиска подходящего разбиения очередного подграфа на два графа с минимизацией разделителя ребер графа.
На третьем этапе вычислительным ядром является расчет величин EC_{(C_{i},C_{j})}, S_{EC_{(C_{i},C_{j})}}, RI_{(C_{i},C_{j})} , RC_{(C_{i},C_{j})} для каждой пары смежных кластеров.
1.4 Макроструктура алгоритма
Как уже рассказывалось ранее, алгоритм включает в себя три основных этапа, каждый из которых, по сути, является отдельным алгоритмом. Этапы выполняются последовательно относительно друг друга.
Макрооперация на первом этапе - процедура нахождения k ближайших соседей, на втором - процедура разбиения наибольшего подграфа на два графа, на третьем - процедура вычисления показателей сходства, на основе которых принимается решение о слиянии подграфов в кластер.
1.5 Схема реализации последовательного алгоритма
1.6 Последовательная сложность алгоритма
1.7 Информационный граф
1.8 Ресурс параллелизма алгоритма
1.9 Входные и выходные данные алгоритма
Входные данные
1. Симметрическая матрица A расстояний между элементами данных размера n\times n с нулями на главной диагонали (a_{ii}= 0, i = 1, \ldots, N).
2. k - количество ближайших соседей для вершин (рекомендуемое значение k от 5 до 20 в зависимости от количества анализируемых объектов).
3. l - наименьшее число вершин, которое может содержать наибольший подкластер на 2-м этапе . Величина этого параметра варьируется от 1 до 5 % от общего числа объектов.
Объём входных данных
\frac{n (n - 1)}{2} (в силу симметричности и нулевой главной диагонали достаточно хранить только над/поддиагональные элементы).
Выходные данные
Вектор из n чисел u_{1}, u_{2}, \ldots, u_{N}, где u_{i} - целое число, соответствующее кластеру i-го объекта.
Объём выходных данных
n
1.10 Свойства алгоритма
2 часть. Программная реализация алгоритма
2.1 Масштабируемость алгоритма и его реализации
2.2 Существующие реализации алгоритма
3 Литература
[1] George Karypis, Eui-Hong (Sam) Han и Vipin Kumar, «Chameleon: Hierarchical Clustering Using Dynamic Modeling», 1999.
[2] http://studopedia.ru/7_41934_algoritm-dinamicheskoy-ierarhicheskoy-klasterizatsii-CHAMELEON.html