Участник:BDA/Ортогонализация Грама-Шмидта
Ортогонализация Грама-Шмидта | |
Последовательный алгоритм | |
Последовательная сложность | O(nm^2) |
Объём входных данных | nm |
Объём выходных данных | nm |
Параллельный алгоритм | |
Высота ярусно-параллельной формы | ? |
Ширина ярусно-параллельной формы | ? |
Основные авторы описания: Белов Н. А., Богомолов Д. А..
Содержание
- 1 Свойства и структура алгоритма
- 1.1 Общее описание алгоритма
- 1.2 Математическое описание алгоритма
- 1.3 Вычислительное ядро алгоритма
- 1.4 Макроструктура алгоритма
- 1.5 Схема реализации последовательного алгоритма
- 1.6 Последовательная сложность алгоритма
- 1.7 Информационный граф
- 1.8 Ресурс параллелизма алгоритма
- 1.9 Входные и выходные данные алгоритма
- 1.10 Свойства алгоритма
- 2 Программная реализация алгоритма
- 2.1 Особенности реализации последовательного алгоритма
- 2.2 Локальность данных и вычислений
- 2.3 Возможные способы и особенности параллельной реализации алгоритма
- 2.4 Масштабируемость алгоритма и его реализации
- 2.5 Динамические характеристики и эффективность реализации алгоритма
- 2.6 Выводы для классов архитектур
- 2.7 Существующие реализации алгоритма
- 3 Литература
1 Свойства и структура алгоритма
1.1 Общее описание алгоритма
Ортогонализация ― алгоритм построения для данной линейно независимой системы векторов евклидова или эрмитова пространства V ортогональной системы ненулевых векторов, порождающих то же самое подпространство в V.
Ортогонализация Грама–Шмидта[1] (процесс Грама–Шмидта) ― наиболее известный алгоритм ортогонализации. Назван в честь Йоргена Педерсена Грама[2] и Эрхарда Шмидта[3], однако ранее уже появлялся в работах Лапласа и Коши. Является частным случаем разложения Ивасавы, так как может быть представлен как разложение невырожденной квадратной матрицы в произведение ортогональной (или унитарной матрицы в случае эрмитова пространства) и верхнетреугольной матрицы с положительными диагональными элементами.
Рассматриваемый алгоритм применяется для борьбы с помехами в адаптивной системе селекции движущихся целей[4], в протоколах безопасности[5], для повышения экономичности алгоритмов оценивания параметров моделей объектов управления[6] и в других областях.
1.2 Математическое описание алгоритма
Входные данные. m линейно независимых векторов \mathbf{a}_1,...,\mathbf{a}_m c размерностью пространства n, записанных в матрице A с элементами \alpha_{ij}.
Выходные данные. m ортогональных векторов \mathbf{b}_1,...,\mathbf{b}_m c размерностью пространства n, записанных в матрице B с элементами \beta_{ij}.
Определим оператор проекции (проецирует вектор \mathbf{a} коллинеарно вектору \mathbf{b}) \mathbf{proj_b a = \frac{\left \langle a,b \right \rangle}{\left \langle b,b \right \rangle }b}, где \mathbf{\left \langle a,b \right \rangle} ― скалярное произведение векторов \mathbf{a} и \mathbf{b}.
Тогда ортогональные векторы вычисляются следующим образом:
\mathbf{b}_1 = \mathbf{a}_1
\mathbf{b}_2 = \mathbf{a}_2 - \mathbf{proj}_{\mathbf{b}_1} \mathbf{a}_2
\mathbf{b}_3 = \mathbf{a}_3 - \mathbf{proj}_{\mathbf{b}_1} \mathbf{a}_3 - \mathbf{proj}_{\mathbf{b}_2} \mathbf{a}_3
\vdots
\mathbf{b}_m = \mathbf{a}_m - \sum_{j=1}^{m-1} \mathbf{proj}_{\mathbf{b}_j} \mathbf{a}_m
Или поэлементно:
\beta_{1j} = \alpha_{1j}
\beta_{ij} = \alpha_{ij} - (\sum_{k=1}^{i-1} \mathbf{proj}_{\mathbf{b}_k} \mathbf{a}_i)_j = \alpha_{ij} - \sum_{k=1}^{i-1}\frac{\sum_{s=1}^{n}\alpha_{is}\beta_{ks}}{\sum_{s=1}^{n}\beta_{ks}\beta_{ks}}\beta_{kj}
1.3 Вычислительное ядро алгоритма
Основное время работы алгоритма приходится на вычисление сумм \sum_{i=1}^{j-1} \mathbf{proj}_{\mathbf{b}_i} \mathbf{a}_k \forall j: j=\overline{1, m}.
1.4 Макроструктура алгоритма
Из описания алгоритма в предыдущих разделов следует, что основную часть данного метода составляют операции вычисления проекций векторов, а также их сумм.
1.5 Схема реализации последовательного алгоритма
Рассмотрим алгоритм, написанный в виде функции для математической системы MATLAB.
Входные данные.
Матрица A с линейно-независимыми векторами в столбцах.
Выходные данные.
Матрица Q с ортонормированным базисом A.
Использование.
Q = gramschmidt( A );
Реализация.
function Q = gramschmidt( A )
% Число векторов.
n = size( A, 2 );
% Инициализируем выходную матрицу.
Q = zeros( n );
% Преобразуем каждый вектор в базисный:
% (1) j-ый базисный вектор будет ортогонален каждому из предыдущих 1..j-1 векторов;
% (2) будет единичной длины.
for j = 1 : n
% Выбираем j-ый вектор
u = A( :, j );
% Специальный случай для j = 1: просто нормируем этот вектор и помещаем
% первым в найденный базис, так как нет векторов, относительно которых
% нужно было бы делать его ортогональным.
% Удаляем из оригинального вектора "u" все компоненты натянутые на базис
% из векторов 1..j-1, их вклад будет удален.
% => j-ый вектор ортогонален остальным.
% Предыдущие базисные вектора были найдены на предыдуших шагах.
% => соблюдаем принцип ортогональности, но не ортонормированности.
for i = 1 : j - 1
u = u - proj( Q(:,i), A(:,j) );
end
% Нормируем вектор
Q(:,j) = u ./ norm( u );
end
end
% Проекция вектора "a" коллинеарно вектору "e".
function p = proj( e, a )
p = (e' * a) / (e' * e) .* e;
end
1.6 Последовательная сложность алгоритма
Рассмотрим m векторов длины n.
- Скалярное произведение векторов требует n-1 сложение и n произведений.
- Вычитание проекции вектора требует 2 скалярных произведения, 1 деление, n умножений и n сложений, то есть:
- 3n-2 (+);
- 3n (\times);
- 1 (\div).
- Вычисление i-го вектора требует i-1 вычитаний проекций, то есть:
- (3n-2)(i-1) (+);
- 3n(i-1) (\times);
- i-1 (\div).
- Мы вычисляем вектора от i=1 до m, поэтому множители (i-1) выражаются треугольным числом (m-1)\frac{m}{2}.
- (3n-2)(m-1)\frac{m}{2} (+);
- 3n(m-1)\frac{m}{2} (\times);
- (m-1)\frac{m}{2} (\div).
Таким образом, cложность алгоритма O(nm^2).
1.7 Информационный граф
1.8 Ресурс параллелизма алгоритма
1.9 Входные и выходные данные алгоритма
Входные данные. Матрица A с элементами \alpha_{ij}, где i = \overline{1, m} (количество линейно независимых векторов) и j = \overline{1, n} (размерность пространства), при этом m \leqslant n.
Объем входных данных. mn
Выходные данные. Матрица B с элементами \beta_{ij}, где i = \overline{1, m} и j = \overline{1, n}, тогда b_{1}, \dots, b_{m} — система ортогональных векторов.
Объем выходных данных. mn
1.10 Свойства алгоритма
Отношение последовательной и параллельной сложности -- ?
Отношение числа операций к суммарному объему входных и выходных данных -- линейное.
Алгоритм почти полностью детерминирован, то есть гарантирована единственность результата выполнения.
Однако, возможно накопление ошибок округления, то есть векторы выходной матрицы часто не точно ортогональны. Из-за потери ортогональности в процессе вычислений классический процесс Грама-Шмидта называют численно неустойчивым.
Процесс Грама-Шмидта может быть сделан более вычислительно устойчивым путём небольшой модификации. Такой алгоритм называется модифицированным процессом Грама-Шмидта.
Процесс Грама-Шмидта может применяться также к бесконечной последовательности линейно независимых векторов.
Процесс Грама-Шмидта может применяться к линейно зависимым векторам. В этом случае он выдаёт \mathbf{0} (нулевой вектор) на шаге j, если \mathbf{a}_j является линейной комбинацией векторов \mathbf{a}_1,\;\ldots,\;\mathbf{a}_{j-1}. Если это может случиться, то для сохранения ортогональности выходных векторов и для предотвращения деления на ноль при ортонормировании алгоритм должен делать проверку на нулевые векторы и отбрасывать их. Количество векторов, выдаваемых алгоритмом, будет равно размерности подпространства, порождённого векторами (то есть количеству линейно независимых векторов, которые можно выделить среди исходных векторов).
Процесс Грама-Шмидта может быть истолкован как разложение невырожденной квадратной матрицы в произведение ортогональной (или унитарной матрицы в случае эрмитова пространства) и верхнетреугольной матрицы с положительными диагональными элементами -- QR-разложение.
2 Программная реализация алгоритма
2.1 Особенности реализации последовательного алгоритма
2.2 Локальность данных и вычислений
2.3 Возможные способы и особенности параллельной реализации алгоритма
2.4 Масштабируемость алгоритма и его реализации
Срок сдачи продлен до 15 ноября.
2.5 Динамические характеристики и эффективность реализации алгоритма
2.6 Выводы для классов архитектур
2.7 Существующие реализации алгоритма
Данный алгоритм реализован во множестве библиотек и математических программных пакетах.
- Библиотека Epicycle (C#).
- Библиотека Spectral Python (SPy).
- Библиотека vect (Haskell).
2.7.1 Пакет Mathematica
Приведем пример скрипта, предназначенного для пакета Mathematica, который проводит процесс ортогонализации Грама-Шмидта над векторами, заданными в фигурных скобках последней строки. Количество векторов и их координат могут быть произвольными. В данном случае для примера взяты векторы \{-2,\;1,\;0\}, \{-2,\;0,\;1\}, \{-0{.}5,\;-1,\;1\}.
Projection[v1_, v2_] := (v1.v2*v2)/v2.v2
MultipleProjection[v1_, vecs_] := Plus @@ (Projection[v1, #1] &) /@ vecs
GramSchmidt[mat_] := Fold[Join[#1, {#2 - MultipleProjection[#2, #1]}] &, {}, mat]
GramSchmidt[{{-2, 1, 0}, {-2, 0, 1}, {-0.5, -1, 1}}]
2.7.2 Пакет Maxima
Приведем пример скрипта, предназначенного для пакета Maxima, который проводит процесс ортогонализации Грама-Шмидта над векторами, заданными в фигурных скобках последней строки. Количество векторов и их координат могут быть произвольными. В данном случае для примера взяты векторы \{-2,\;1,\;0\}, \{-2,\;0,\;1\}, \{-0{.}5,\;-1,\;1\}.
load(eigen);
x: matrix ([-2,1,0],[-2,0,1],[-0.5,-1,1]);
y: gramschmidt(x);
2.7.3 Пакет MATLAB
Приведем пример скрипта, предназначенного для пакета MATLAB, который проводит процесс ортогонализации Грама-Шмидта над векторами, заданными в фигурных скобках последней строки. В данном пакете уже существует функция, которая осуществляет данный процесс. Столбцы входной матрицы предполагаются линейно-независимыми, количество векторов и их координат могут быть произвольными. Функция возращает матрицу X с ортонормированными столбцами и обратимую верхне-треугольную матрицу Y.
В данном случае для примера взяты векторы \{-2,\;1,\;0\}, \{-2,\;0,\;1\}, \{-0{.}5,\;-1,\;1\}.
[x y]=gschmidt([-2 1 0; -2 0 1; -0.5 -1 1])
3 Литература
- ↑ Канатников А.Н., Крищенко А.П. "Линейная алгебра." ― 3-е изд., стер. ― М.: Изд-во МГТУ им. Н.Э. Баумана, 2002
- ↑ O'Connor, John J.; Robertson, Edmund F., "Jørgen Pedersen Gram", MacTutor History of Mathematics archive, University of St Andrews.
- ↑ O'Connor, John J.; Robertson, Edmund F., "Erhard Schmidt", MacTutor History of Mathematics archive, University of St Andrews.
- ↑ Орешкин Б.Н., Бакулев П.А. "Быстрая процедура ортогонализации Грамма–Шмидта и ее применение для борьбы с помехами в адаптивной системе селекции движущихся целей" ― Радиотехника / №12 за 2007 г.
- ↑ Пискова А.В., Менщиков А.А., Коробейников А.Г. "Использование ортогонализации Грама-Шмидта в алгоритме приведения базиса решетки для протоколов безопасности" ― Вопросы кибербезопасности №1(14) 2016
- ↑ Карелин А.Е., Светлаков А.А. "Использование ортогонализации Грама-Шмидта для повышения экономичности многоточечных алгоритмов рекуррентного оценивания параметров моделей объектов управления" ― Известия Томского политехнического университета [Известия ТПУ]. — 2006. — Т. 309, № 8. — [С. 15-19].