Алгоритм Ланцоша с выборочной ортогонализацией

Материал из Алговики
Перейти к навигации Перейти к поиску

1 Свойства и структура алгоритма

1.1 Общее описание алгоритма

Алгоритм Лáнцоша представляет собой мощный метод для нахождения нескольких собственных значений и собственных векторов симметричной матрицы А и для решения систем линейных уравнений. Алгоритм особенно эффективен, если матрица А разреженная и большого размера. Однако любая практическая реализация этого алгоритма страдает от ошибок округления, т.к. векторы Ланцоша теряют взаимную ортогональность. Для того чтобы поддерживать некоторый уровень ортогональности, появились методы полной переортогонализации и выборочной ортогонализации. В этой работе мы рассмотрим последний метод в качестве способа для поддержания ортогональности среди векторов Ланцоша. Он обладает почти столь же высокой точностью, как алгоритм с полной переортогонализацией, и почти столь же низкой стоимостью, как алгоритм без ортогонализации.


Дается вещественная симметричная матрица A = A^T,

A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1\ n-1} & a_{1\ n} \\ a_{12} & a_{22} & a_{23} & \cdots & a_{2\ n-1} & a_{2\ n} \\ a_{13} & a_{23} & a_{33} & \cdots & a_{3\ n-1} & a_{3\ n} \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ a_{1\ n-1} & \cdots & \cdots & a_{n-2\ n-1} & a_{n-1\ n-1} & a_{n-1\ n} \\ a_{1\ n} & \cdots & \cdots & a_{n-2\ n} & a_{n-1\ n} & a_{n\ n} \\ \end{pmatrix} ,

случайный вектор b , являющийся первым приближением собственного вектора матрицы, k - количество собственных значений и собственных векторов, которые мы хотим найти, т.е. количество итераций.

На каждой итерации строится матрица Q_j = [q_1, q_2, \dots, q_j] размерности n \times j, состоящая из ортонормированных векторов Ланцоша. В качестве приближенных собственных значений берутся числа Ритца, т.е. собственные значения симметричной трехдиагональной матрицы T_j = Q^T_j A Q_j размерности j \times j.

T_j = \begin{pmatrix} \alpha_1 & \beta_1 \\ \beta_1 & \alpha_2 & \beta_2 \\ & \beta_2 & \ddots & \ddots \\ & & \ddots & \ddots & \beta_{j-1} \\ & & & \beta_{j-1} & \alpha_j \end{pmatrix}

Однако, векторы q_j теряют ортогональность вследствие приобритения больших компонент в направлениях векторов Ритца y_{i,j} = Q_j v_i , отвечающих сошедшимся числам Ритца \theta_i . Поэтому предлагается на каждом шаге следить за оценками погрешностей \beta_j|v_i(j)| , где v_i(j) - j-я компонента собственного вектора v_i . И когда какая-то оценка становится слишком малой, проводить ортогонализацию вектора Ланцоша.

[math] \beta_0=0,q_0=0[/math]
[math] q_{1} = \frac{b_{j}}{\|b\|_2}[/math], где [math] \|b\|_2 = \sqrt{\sum\limits_{j=1}^{n} b_j^2}[/math]
[math] for\, j=1\,\, to\, \, k\, \, do:[/math]
    [math]z=Aq_j,  [/math]
    [math]\alpha_j=q_j^Tz, [/math]
    [math]z=z-\alpha_jq_j-\beta_{j-1}q_{j-1},  [/math]
    [math]for\, i=1\,\, to\, \, j-1\, \, do: [/math]
        [math]if\,  \beta_j|v_i(j)| \leqslant \sqrt{\varepsilon}\|T_j\| [/math]
            [math]z = z-(y^T_{i,j},z)y_{i,j} [/math], где [math]y_{i,j} = Q_jv_i[/math] 
    [math]\beta_{j}=\|z\|_2 [/math]
    [math]q_{j+1}=z/\beta_{j}, [/math]
    Вычисляем собственные значения и собственные векторы полученной матрицы [math]T_j[/math].