Участник:ArtyomKhakimov/Алгоритм Ланцоша для арифметики с плавающей точкой с выборочной ортогонализацией

Материал из Алговики
Перейти к навигации Перейти к поиску

Авторы: Хакимов А. С.

1 Свойства и структура алгоритма

1.1 Общее описание алгоритма

Алгоритм Ланцоша служит для нахождения собственных значений и собственных векторов для больших разреженных матриц, к которым нельзя применить прямые методы из-за больших требований к памяти и времени. Он был опубликован Корнелием Ланцошем в 1950 году. Его эффективность обусловлена экономией памяти для хранения матриц и экономией вычислительных ресурсов. Алгоритм итерационный и использует степенной метод для поиска наибольших собственных значений и векторов матриц. Основной недостаток алгоритма заключается в накоплении ошибок округления, для решения которых появились методы поддержания ортогонализации т.н. векторов Ланцоша. Здесь мы рассмотрим выборочный метод поддержания ортогонализации, который существенно экономит процессорное время.


На вход алгоритма подаётся [math]A = A^T[/math],


[math] A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1\ n-1} & a_{1\ n} \\ a_{12} & a_{22} & a_{23} & \cdots & a_{2\ n-1} & a_{2\ n} \\ a_{13} & a_{23} & a_{33} & \cdots & a_{3\ n-1} & a_{3\ n} \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ a_{1\ n-1} & \cdots & \cdots & a_{n-2\ n-1} & a_{n-1\ n-1} & a_{n-1\ n} \\ a_{1\ n} & \cdots & \cdots & a_{n-2\ n} & a_{n-1\ n} & a_{n\ n} \\ \end{pmatrix} [/math] [math] ,\, \;[/math]


случайный вектор [math]b[/math], как первое приближение собственного вектора матрицы и [math]k [/math] - количество собственных значений и собственных векторов, которые требуется найти.

Матрица [math]Q_j = [q_1, q_2, \dots, q_j][/math] размерности [math]n \times j[/math] строится на каждой итерации и состоит из ортонормированных векторов Ланцоша. А в качестве приближенных собственных значений берутся числа Ритца [math]\theta_i [/math], - собственные значения симметричной трехдиагональной матрицы [math]T_j = Q^T_j A Q_j[/math] размерности [math]j \times j[/math].

[math] T_j = \begin{pmatrix} \alpha_1 & \beta_1 \\ \beta_1 & \alpha_2 & \beta_2 \\ & \beta_2 & \ddots & \ddots \\ & & \ddots & \ddots & \beta_{j-1} \\ & & & \beta_{j-1} & \alpha_j \end{pmatrix}\; (2). [/math]