Обратная подстановка (вещественный вариант)
Обратная подстановка для неособенной верхней треугольной матрицы | |
Последовательный алгоритм | |
Последовательная сложность | O(n^2) |
Объём входных данных | O(n^2) |
Объём выходных данных | n |
Параллельный алгоритм | |
Высота ярусно-параллельной формы | O(n) |
Ширина ярусно-параллельной формы | O(n) |
Основные авторы описания: А.В.Фролов.
Содержание
- 1 Свойства и структура алгоритма
- 1.1 Общее описание алгоритма
- 1.2 Математическое описание алгоритма
- 1.3 Вычислительное ядро алгоритма
- 1.4 Макроструктура алгоритма
- 1.5 Схема реализации последовательного алгоритма
- 1.6 Последовательная сложность алгоритма
- 1.7 Информационный граф
- 1.8 Ресурс параллелизма алгоритма
- 1.9 Входные и выходные данные алгоритма
- 1.10 Свойства алгоритма
- 2 Программная реализация алгоритма
- 3 Возможные способы и особенности параллельной реализации алгоритма =
- 4 Литература
1 Свойства и структура алгоритма
1.1 Общее описание алгоритма
Обратная подстановка - решение системы линейных алгебраических уравнений (СЛАУ) Ux = y с верхней треугольной матрицей U. Матрица U может быть одной из составляющих матрицы A в каких-либо разложениях и получается либо из LU-разложения последней каким-либо из многочисленных способов (например, простое разложение Гаусса, разложение Гаусса с выбором ведущего элемента, компактная схема Гаусса, разложение Холецкого и др.), либо из других (например из QR-разложения). В силу треугольности U решение СЛАУ является одной из модификаций общего метода подстановки и записывается простыми формулами.
В[1] методом обратной подстановки назван также и метод решения СЛАУ с нижней треугольной матрицей. Там же отмечено, что в литературе иногда под обратной подстановкой имеют в виду, как и здесь, только решения СЛАУ с верхней треугольной матрицей, а решение нижних треугольных систем называют прямой подстановкой. Такой же системы названий будем придерживаться и здесь, во избежание одноимённого названия различных алгоритмов. Кроме того, обратная подстановка, представленная здесь, одновременно может быть частью метода Гаусса для решения СЛАУ, а именно - его обратным ходом, чего нельзя сказать про прямую подстановку.
Существует метод со сходным названием - Обратная подстановка с нормировкой. При том, что он решает, по существу, ту же задачу, что и простая обратная подстановка, его схема несколько сложнее. Это связано со специальными мерами по уменьшению влияния ошибок округления на результат. Алгоритм обратной подстановки с нормировкой в данном разделе не рассматривается.
1.2 Математическое описание алгоритма
Исходные данные: верхняя треугольная матрица U (элементы u_{ij}), вектор правой части y (элементы y_{i}).
Вычисляемые данные: вектор решения x (элементы x_{i}).
Формулы метода:
- \begin{align} x_{n} & = y_{n}/u_{nn} \\ x_{i} & = \left (y_{i} - \sum_{j = i+1}^{n} u_{ij} x_{j} \right ) / u_{ii}, \quad i \in [1, n - 1]. \end{align}
Существует также блочная версия метода, однако в данном описании разобран только точечный метод.
1.3 Вычислительное ядро алгоритма
Вычислительное ядро алгоритма обратной подстановки можно составить из множественных (всего их n-1) вычислений скалярных произведений строк матрицы U (за исключением диагонального элемента) на уже вычисленную часть вектора x:
- \sum_{j = i+1}^{n} u_{ij} x_{j}
в режиме накопления или, в зависимости от требований задачи, без его использования, с их последующим вычитанием из компоненты вектора y и деления на диагональный элемент матрицы U. В отечественных реализациях, даже в последовательных версиях, упомянутый способ представления не используется. Дело в том, что даже в этих реализациях метода вычисление сумм вида
- y_{i} - \sum_{j = i+1}^{n} u_{ij} x_{j}
в которых и встречаются скалярные произведения, ведутся не в порядке «вычислили скалярное произведение, а потом вычли его из элемента вектора», а путём вычитания из элемента покомпонентных произведений, являющихся частями скалярных произведений. Поэтому вычислительным ядром алгоритма следует считать не вычисления скалярных произведений, а вычисления выражений
- y_{i} - \sum_{j = i+1}^{n} u_{ij} x_{j}
в режиме накопления или, в зависимости от требований задачи, без его использования, плюс деления результатов этих вычислений на диагональные элементы матрицы.
1.4 Макроструктура алгоритма
Как уже упоминалось в описании ядра алгоритма, основную часть метода обратной подстановки составляют множественные (всего их n-1) вычисления сумм
- y_{i} - \sum_{j = i+1}^{n} u_{ij} x_{j}
в режиме накопления или без его использования, а также деления результатов этих вычислений на диагональные элементы матрицы.
1.5 Схема реализации последовательного алгоритма
Последовательность действий описываемого алгоритма:
1. x_{n} = y_{n}/u_{nn}
Далее для всех i от n-1 до 1 по убыванию выполняются
2. x_{i} = \left (y_{i} - \sum_{j = i+1}^{n} u_{ij} x_{j} \right ) / u_{ii}.
Особо отметим, что вычисления сумм вида y_{i} - \sum{}_{j = i+1}^{n} u_{ij} x_{j} производят в режиме накопления вычитанием из y_{i} произведений u_{ij} x_{j} для j от n до i + 1, c убыванием j. Использование другого порядка выполнения суммирования приводит к резкому ухудшению параллельных свойств алгоритма, хотя, к сожалению, это кое-где встречается в литературе и пакетах программ. В качестве примера использования другого порядка вычислений можно привести фрагмент программы из[2], где обратная подстановка является обратным ходом в методе Гаусса, а возрастание индекса суммирования связано, в основном, с ограничениями используемого авторами книги старого диалекта Фортрана.
1.6 Последовательная сложность алгоритма
Для алгоритма обратной подстановки в случае решения линейной системы с верхней треугольной матрицей порядка n в последовательном (наиболее быстром) варианте требуется:
- n делений,
- \frac{n^2-n}{2} сложений (вычитаний),
- \frac{n^2-n}{2} умножений.
Выполнение умножений и сложений (вычитаний) составляет основную часть алгоритма.
При этом использование режима накопления требует выполнения умножений и вычитаний в режиме двойной точности (или использования функции аналогичной DPROD на языке Фортран).
Таким образом, при классификации по последовательной сложности, метод обратной подстановки относится к алгоритмам со сложностью O(n^2).
1.7 Информационный граф
Опишем граф алгоритма как аналитически, так и в виде рисунка.
Граф алгоритма обратной подстановки состоит из двух групп вершин, расположенных в целочисленных узлах двух областей разной размерности.
Первая группа вершин расположена в одномерной области, соответствующая ей операция выполняет функцию деления. Естественно введённая единственная координата каждой из вершин i изменяется в диапазоне от n до 1, принимая все целочисленные значения.
Делимое в этой операции:
- при i = n — элемент входных данных, а именно y_{n};
- при i \lt n — результат срабатывания операции, соответствующей вершине из второй группы, с координатами i, i+1.
Делитель для этой операции - элемент входных данных, а именно u_{nn}.
Результат выполнения операции является выходным данным x_{i}.
Вторая группа вершин расположена в двумерной области, соответствующая ей операция a-bc. Естественно введённые координаты области:
- i — меняется в диапазоне от n-1 до 1, принимая все целочисленные значения;
- j — меняется в диапазоне от n до i+1, принимая все целочисленные значения.
Аргументы операции:
- a:
- при j = n элемент входных данных y_{i};
- при j \lt n — результат выполнения операции, соответствующей вершине из второй группы, с координатами i, j+1;
- b — элемент входных данных, а именно u_{ij};
- c — результат срабатывания операции, соответствующей вершине из первой группы, с координатой j.
Результат срабатывания операции является промежуточным данным алгоритма.
Описанный граф представлен на рис. 1, выполненном для случая n = 5. Здесь вершины первой группы обозначены жёлтым цветом и знаком деления, вершины второй — зелёным цветом и буквой f. Изображена только подача входных данных из вектора y, подача элементов матрицы U, идущая во все вершины, на рисунке не представлена.
1.8 Ресурс параллелизма алгоритма
Для обратной подстановки в случае решения линейной системы с верхней треугольной матрицей порядка n в параллельном варианте требуется последовательно выполнить следующие ярусы:
- n ярусов делений (в каждом из ярусов одно деление),
- по n - 1 ярусов умножений и сложений/вычитаний (в каждом из ярусов — линейное количество операций, от 1 до n-1.
Таким образом, в параллельном варианте, в отличие от последовательного, вычисления делений будут определять довольно значительную долю требуемого времени. При реализации на конкретных архитектурах наличие в отдельных ярусах ЯПФ отдельных делений может породить и другие проблемы. Например, при реализации метода обратной подстановки на ПЛИСах остальные вычисления (умножения и сложения/вычитания) могут быть конвейеризованы, что даёт экономию и по ресурсам на программируемых платах; деления из-за их изолированности приведут к занятию ресурсов на платах, которые будут простаивать большую часть времени.
При этом использование режима накопления требует совершения умножений и вычитаний в режиме двойной точности, а в параллельном варианте это означает, что практически все промежуточные вычисления для выполнения алгоритма в режиме накопления должны быть двойной точности. В отличие от последовательного варианта это означает некоторое увеличение требуемой памяти.
Таким образом, при классификации по высоте ЯПФ, алгоритм обратной подстановки относится к алгоритмам с линейной сложностью. При классификации по ширине ЯПФ его сложность также будет линейной.
1.9 Входные и выходные данные алгоритма
Входные данные: верхняя треугольная матрица U (элементы u_{ij}), вектор правой части y (элементы y_{i}).
Объём входных данных: \frac{n (n + 3)}{2} (в силу треугольности достаточно хранить только ненулевые элементы матрицы U).
Выходные данные: вектор решения x (элементы x_{i}).
Объём выходных данных: n.
1.10 Свойства алгоритма
Соотношение последовательной и параллельной сложности в случае неограниченных ресурсов, как хорошо видно, является линейным (отношение квадратической к линейной).
При этом вычислительная мощность алгоритма обратной подстановки, как отношение числа операций к суммарному объему входных и выходных данных – всего лишь константа.
Представленный алгоритм обратной подстановки является полностью детерминированным. Использование другого порядка выполнения ассоциативных операций в данной версии нами не рассматривается, поскольку в корне меняет структуру алгоритма и меняет сложность с линейной на квадратичную.
Наличие линейного количества ярусов ЯПФ, состоящих из одного-единственного деления, потенциально замедляющее параллельные реализации алгоритма, является его характерным "узким местом", особенно в сравнении со схожей по решаемой математической задаче прямой подстановке, где диагональные элементы единичны. В связи с этим для решения СЛАУ предпочтительны такие разложения, содержащие треугольные матрицы, где в треугольных матрицах диагональные элементы единичны. В тех же случаях, когда получаются неособенные треугольные матрицы, их желательно предварительно, до решения СЛАУ с ними, преобразовать в произведение диагональной и треугольной с единичными диагональными элементами.
У алгоритма обратной подстановки существует несколько блочных вариантов. Граф некоторых из них совпадает с графом точечного варианта, различия связаны в основном с порядком прохождения основных циклов алгоритма, а именно, с их развёртыванием и перестановкой. Эти приёмы могут помочь в оптимизации обменов на конкретных вычислительных системах.
2 Программная реализация алгоритма
2.1 Особенности реализации последовательного алгоритма
В простейшем варианте метод обратной подстановки на Фортране можно записать так:
X(N) = Y(N) / U(N,N)
DO I = N-1, 1, -1
S = Y(I)
DO J = N, I+1, -1
S = S - DPROD(U(I,J), X(J))
END DO
X(I) = S / U(I,I)
END DO
При этом для реализации режима накопления переменная S должна быть двойной точности.
3 Возможные способы и особенности параллельной реализации алгоритма =
Вариантов параллельной реализации алгоритма не так уж и много, если не использовать то, что оба главных цикла можно развернуть, перейдя, таким образом, к блочной версии. Версии без развёртывания циклов возможны как с полностью параллельными циклами по I:
DO PARALLEL I = 1, N
X(I) = Y(I)
END DO
DO J = N, 1, -1
X(J) = X(J) / U(J,J)
DO PARALLEL I = 1, J-1
X(I) = X(I) - U(I,J)*X(J)
END DO
END DO
так и с использованием "скошенного параллелизма" в главном гнезде циклов.
Вещественный вариант обратной подстановки реализован как в основных библиотеках программ отечественных организаций, так и в западных пакетах LINPACK, LAPACK, ScaLAPACK и др. При этом в отечественных реализациях, как правило, выполнены стандартные требования к методу с точки зрения ошибок округления, то есть, реализован режим накопления, и обычно нет лишних операций. Реализация точечного варианта алгоритма в современных западных пакетах обычно происходит из одной и той же реализации метода в LINPACK, использующей библиотеку BLAS.
Для большинства современных пакетов имеется также блочный вариант алгоритма обратной подстановки, в том числе и тот, граф которого топологически тождествен графу точечного варианта. Из-за того, что количество читаемых данных примерно равно количеству операций, блочность может дать некоторое ускорение работы благодаря лучшему использованию кэшей процессоров. Именно в направлении оптимизации кэширования и следует сосредоточить основные усилия при оптимизации работы программы.
3.1 Выводы для классов архитектур
Если исходить из структуры алгоритма, то при реализации на суперкомпьютерах следует выполнить две вещи. Во-первых, для минимизации обменов между узлами следует избрать блочный вариант, в котором или все элементы матрицы доступны на всех узлах, или заранее распределены по узлам. В таком случае количество передаваемых между узлами данных будет невелико по сравнению с количеством арифметических операций. Но при такой организации работы получится, что наибольшие временные затраты будут связаны с неоптимальностью обработки отдельных блоков. Поэтому, видимо, следует сначала оптимизировать не блочный алгоритм в целом, а подпрограммы, используемые на отдельных процессорах: точечный метод обратной подстановки, перемножения матриц и др. подпрограммы. Ниже содержится информация о возможном направлении такой оптимизации.