Алгоритм устойчивой кластеризации с иcпользованием связей
Алгоритм устойчивой кластеризации с иcпользованием связей | |
Последовательный алгоритм | |
Последовательная сложность | ... |
Объём входных данных | ... |
Объём выходных данных | ... |
Параллельный алгоритм | |
Высота ярусно-параллельной формы | ... |
Ширина ярусно-параллельной формы | ... |
Автор описания: В.А. Рулев.
Содержание
- 1 Свойства и структура алгоритма
- 1.1 Общее описание алгоритма
- 1.2 Математическое описание алгоритма
- 1.3 Вычислительное ядро алгоритма
- 1.4 Макроструктура алгоритма
- 1.5 Схема реализации последовательного алгоритма
- 1.6 Последовательная сложность алгоритма
- 1.7 Информационный граф
- 1.8 Ресурс параллелизма алгоритма
- 1.9 Входные и выходные данные алгоритма
- 1.10 Свойства алгоритма
- 2 Программная реализация алгоритма
- 2.1 Особенности реализации последовательного алгоритма
- 2.2 Локальность данных и вычислений
- 2.3 Возможные способы и особенности параллельной реализации алгоритма
- 2.4 Масштабируемость алгоритма и его реализации
- 2.5 Динамические характеристики и эффективность реализации алгоритма
- 2.6 Выводы для классов архитектур
- 2.7 Существующие реализации алгоритма
- 3 Литература
1 Свойства и структура алгоритма
1.1 Общее описание алгоритма
Алгоритм устойчивой кластеризации с иcпользованием связей (robust clustering using links, ROCK) был предложен в 2000 году Sudipto Guha (Stanford University), Rajeev Rastogi (Bell Laboratories) и Kyuseok Shim (Bell Laboratories) [1] для кластеризации объектов с категорийными признаками.
Кластеризация (кластерный анализ) — задача разбиения заданной выборки объектов на непересекающиеся подмножества, называемые кластерами, так, чтобы каждый кластер состоял из схожих объектов, а объекты разных кластеров существенно отличались. Каждый объект из выборки характеризуется рядом признаков, которые могут быть вещественными, целочисленными, категорийными (т.е. принимающими значения из какого-либо множества) и др. Множество значений, которые может принимать признак, называется доменом этого признака. Так, например, у объекта кошка может быть категорийный признак порода, доменом которого является множество [персидская, бенгальская, сфинкс, мейн-кун, ...].
Будем считать объекты выборки точками P=\{p_1, ..., p_M\} в N-мерном пространстве признаков. В ходе кластеризации все имеющиеся точки должны быть разделены на k непересекающихся подмножеств (кластеров) C_1, ..., C_k таким образом, чтобы полученные кластеры максимизировали некоторую критериальную функцию f(C_1, ..., C_N).
1.2 Математическое описание алгоритма
Алгоритм устойчивой кластеризации с использованием связей предназначен для работы с объектами типа "транзакция" (иногда также называется "покупательская корзина"). Транзакция представляет собой множество товаров, приобретенных покупателем у поставщика. Количество атрибутов транзакции равно количеству предлагаемых поставщиком товаров, и каждый атрибут может принимать два значения: присутствует (1), если этот товар присутствует в транзакции, или отсутствует (0), если он в транзакции отсутствует.
Будет называть две транзакции p_1 и p_2 соседями, если мера сходства этих транзакций больше некоторого заранее заданного порогового значения \theta, то есть
sim(p_1,p_2)\lt \theta
В качестве меры сходства в алгоритме устойчивой кластеризации с использованием связей используется основанная на коэффициенте Жаккара мера сходства
sim(p_1,p_2)=\frac{N)p_1 \cap p_2)}{N(p_1 \cup p_2)}
где N(p) - количество товаров, присутствующих в транзакции p.
Количеством связей двух транзакций будем называть количество общих соседей этих транзакций, то есть
links(p_1,p_2)=N(\{p \in P | sim(p_1,p)\lt \theta\} \cap \{p \in P | sim(p_2,p)\lt \theta\})
1.3 Вычислительное ядро алгоритма
тут что-то будет
1.4 Макроструктура алгоритма
и тут
1.5 Схема реализации последовательного алгоритма
и тут
1.6 Последовательная сложность алгоритма
и тут
1.7 Информационный граф
и тут
1.8 Ресурс параллелизма алгоритма
и тут
1.9 Входные и выходные данные алгоритма
и тут
1.10 Свойства алгоритма
и тут
2 Программная реализация алгоритма
2.1 Особенности реализации последовательного алгоритма
и тут
2.2 Локальность данных и вычислений
и тут
2.3 Возможные способы и особенности параллельной реализации алгоритма
и тут
2.4 Масштабируемость алгоритма и его реализации
и тут
2.5 Динамические характеристики и эффективность реализации алгоритма
и тут
2.6 Выводы для классов архитектур
и тут
2.7 Существующие реализации алгоритма
нету :(
3 Литература
<references \>
- ↑ Sudipto Guha, Rajeev Rastogi, Kyuseok Shim ROCK: A robust clustering algorithm for categorical attributes. 2000. Information Systems. Vol 25, Issue 5, Pages 345-366