Уровень метода

Метод Хаусхолдера (отражений) приведения матрицы к хессенберговой (почти треугольной) форме: различия между версиями

Материал из Алговики
Перейти к навигации Перейти к поиску
[непроверенная версия][досмотренная версия]
 
м
Строка 1: Строка 1:
#перенаправление [[Классический точечный метод Хаусхолдера (отражений) приведения матрицы к хессенберговой (почти треугольной) форме]]
+
{{level-m}}
 +
 
 +
'''Метод Хаусхолдера''' (в советской математической литературе чаще называется '''методом отражений''') используется для разложения  матриц в виде <math>A=QRQ^T</math> (<math>Q</math> - ортогональная, <math>R</math> — правая почти треугольная матрица)<ref>В.В.Воеводин, Ю.А.Кузнецов. Матрицы и вычисления. М.: Наука, 1984.</ref>. При этом матрица <math>Q</math> хранится и используется не в своём явном виде, а в виде произведения матриц отражения<ref name="VOLA">Воеводин В.В. Вычислительные основы линейной алгебры. М.: Наука, 1977.</ref>. Каждая из матриц отражения может быть определена одним вектором. Это позволяет в классическом исполнении метода отражений хранить результаты разложения на месте матрицы A с использованием одномерного дополнительного массива.
 +
 
 +
Для выполнения разложения матрицы в произведение хессенберговой и двух ортогональных используются попеременные умножения слева и справа её текущих модификаций на матрицы Хаусхолдера (отражений).
 +
 
 +
{{Шаблон:Матрица отражений}}
 +
 
 +
Кроме [[Классический точечный метод Хаусхолдера (отражений) приведения матрицы к хессенберговой (почти треугольной) форме|классического метода]], есть и другие варианты метода Хаусхолдера, отличающиеся либо наличием блочных операций, либо другими нюансами.
 +
 
 +
= Литература =

Версия 17:24, 20 ноября 2017


Метод Хаусхолдера (в советской математической литературе чаще называется методом отражений) используется для разложения матриц в виде [math]A=QRQ^T[/math] ([math]Q[/math] - ортогональная, [math]R[/math] — правая почти треугольная матрица)[1]. При этом матрица [math]Q[/math] хранится и используется не в своём явном виде, а в виде произведения матриц отражения[2]. Каждая из матриц отражения может быть определена одним вектором. Это позволяет в классическом исполнении метода отражений хранить результаты разложения на месте матрицы A с использованием одномерного дополнительного массива.

Для выполнения разложения матрицы в произведение хессенберговой и двух ортогональных используются попеременные умножения слева и справа её текущих модификаций на матрицы Хаусхолдера (отражений).

Матрица отражений (Хаусхолдера) - матрица вида [math]U=E-2ww^*[/math], где [math]w[/math] - вектор, удовлетворяющий равенству [math]w^{*}w=1[/math]. Является одновременно унитарной ([math]U^{*}U=E[/math]) и эрмитовой ([math]U^{*}=U[/math]), поэтому обратна самой себе ([math]U^{-1}=U[/math]).

Кроме классического метода, есть и другие варианты метода Хаусхолдера, отличающиеся либо наличием блочных операций, либо другими нюансами.

Литература

  1. В.В.Воеводин, Ю.А.Кузнецов. Матрицы и вычисления. М.: Наука, 1984.
  2. Воеводин В.В. Вычислительные основы линейной алгебры. М.: Наука, 1977.