Обратная подстановка (вещественный вариант): различия между версиями

Материал из Алговики
Перейти к навигации Перейти к поиску
[непроверенная версия][непроверенная версия]
Строка 67: Строка 67:
  
 
При классификации по последовательной сложности, таким образом, обратный ход метода Гаусса относится к алгоритмам ''с квадратической сложностью''.
 
При классификации по последовательной сложности, таким образом, обратный ход метода Гаусса относится к алгоритмам ''с квадратической сложностью''.
 +
 +
=== Информационный граф ===
 +
 +
Опишем [[глоссарий#Граф алгоритма|граф алгоритма]] как аналитически, так и в виде рисунка.
 +
 +
Граф алгоритма состоит из двух групп вершин, расположенных в целочисленных узлах двух областей разной размерности.
  
 
[[Файл:DirectU.png|600px|thumb|left|описание]]
 
[[Файл:DirectU.png|600px|thumb|left|описание]]
 +
 +
'''Первая''' группа вершин расположена в одномерной области, соответствующая ей операция вычисляет функцию деления.
 +
Естественно введённая единственная координата каждой из вершин <math>i</math> меняется в диапазоне от <math>1</math> до <math>n</math>, принимая все целочисленные значения.
 +
 +
Делимое в этой операции:
 +
 +
* при <math>i = n</math> — элемент ''входных данных'', а именно  <math>y_{n}</math>;
 +
* при <math>i < n</math> — результат срабатывания операции, соответствующей вершине из второй группы, с координатами <math>i</math>, <math>i+1</math>.
 +
 +
Делитель для этой операции - элемент ''входных данных'', а именно  <math>u_{nn}</math>.
 +
 +
Результат срабатывания операции является ''выходным данным'' <math>x_{i}</math>.
 +
 +
'''Вторая''' группа вершин расположена в двумерной области, соответствующая ей операция  <math>a - b * c</math>.
 +
Естественно введённые координаты области таковы:
 +
* <math>i</math> — меняется в диапазоне от <math>n-1</math> до <math>1</math>, принимая все целочисленные значения;
 +
* <math>j</math> — меняется в диапазоне от <math>n</math> до <math>i+1</math>, принимая все целочисленные значения.
 +
 +
Аргументы операции следующие:
 +
*<math>a</math>:
 +
** при <math>j = n</math> элемент входных данных <math>y_{i}</math>;
 +
** при <math>j < n</math> — результат срабатывания операции, соответствующей вершине из второй группы, с координатами <math>i, j+1</math>;
 +
*<math>b</math> — элемент ''входных данных'', а именно  <math>u_{ij}</math>;
 +
*<math>c</math> — результат срабатывания операции, соответствующей вершине из первой группы, с координатой <math>j</math>;
 +
 +
Результат срабатывания операции является ''промежуточным данным'' алгоритма.
 +
 +
Описанный граф можно посмотреть на рисунке, выполненном для случая <math>n = 5</math>. Здесь вершины первой группы обозначены розовым цветом и знаком деления, вершины второй — зелёным цветом и буквой f. Изображена подача только входных данных из вектора <math>y_{i}</math>, подача элементов матрицы <math>U</math>, идущая во все вершины, на рисунке не представлена.

Версия 12:09, 11 сентября 2014

1 Описание свойств и структуры алгоритма

1.1 Словесное описание алгоритма

Обратный ход метода Гаусса - решение СЛАУ [math]Ux = y[/math] с правой треугольной матрицей [math]U[/math]. Матрица [math]U[/math] - одна из составляющих матрицы [math]A[/math] и получается либо из [math]LU[/math]-разложения последней каким-либо из многочисленных способов (например, простое разложение Гаусса, разложение Гаусса с выбором ведущего элемента, компактная схема Гаусса, разложение Холецкого и др.), либо из других разложений. В силу треугольности [math]U[/math] решение СЛАУ является одной из модификаций общего метода подстановки и записывается простыми формулами.

1.2 Математическое описание

Исходные данные: правая треугольная матрица [math]U[/math] (элементы [math]u_{ij}[/math]), вектор правой части [math]y[/math] (элементы [math]y_{i}[/math]).

Вычисляемые данные: вектор решения [math]x[/math] (элементы [math]x_{i}[/math]).

Формулы метода:

[math] \begin{align} x_{n} & = y_{n}/u_{nn} \\ x_{i} & = \left (y_{i} - \sum_{j = i+1}^{n} u_{ij} x_{j} \right ) / u_{ii}, \quad i \in [1, n - 1]. \end{align} [/math]

Существует также блочная версия метода, однако в данном описании разобран только точечный метод.

1.3 Вычислительное ядро алгоритма

Вычислительное ядро обратного хода метода Гаусса можно составить из множественных (всего их [math]n[/math]) вычислений скалярных произведений строк матрицы [math]U[/math] на уже вычисленную часть вектора [math]x[/math]:

[math] \sum_{j = i+1}^{n} u_{ij} x_{j} [/math]

в режиме накопления или без него, в зависимости от требований задачи, с их последующим вычитанием из компоненты вектора [math]y[/math] и деления на диагональный элемент матрицы [math]U[/math]. В отечественных реализациях, даже в последовательных, упомянутый способ представления не используется. Дело в том, что даже в этих реализациях метода вычисление сумм типа

[math] y_{i} - \sum_{j = i+1}^{n} u_{ij} x_{j} [/math]

в которых и встречаются скалярные произведения, ведутся не в порядке «вычислили скалярное произведение, а потом вычли его из элемента», а путём вычитания из элемента покомпонентных произведений, являющихся частями скалярных произведений. Поэтому следует считать вычислительным ядром метода не вычисления скалярных произведений, а вычисления выражений

[math] y_{i} - \sum_{j = i+1}^{n} u_{ij} x_{j} [/math]

в режиме накопления или без него, в зависимости от требований задачи, плюс деления результатов этих вычислений на диагональные элементы матрицы.

1.4 Макроструктура алгоритма

Как уже записано в описании ядра алгоритма, основную часть метода составляют множественные (всего [math]n-1[/math]) вычисления сумм

[math]y_{i} - \sum_{j = i+1}^{n} u_{ij} x_{j} [/math]

в режиме накопления или без него, плюс деления результатов этих вычислений на диагональные элементы матрицы.

1.5 Описание схемы реализации последовательного алгоритма

Чтобы понять последовательность исполнения, перепишем формулы метода так:

1. [math]x_{n} = y_{n}/u_{nn}[/math]

Далее для всех [math]i[/math] от [math]n-1[/math] до [math]1[/math] по убыванию выполняются

2. [math]x_{i} = \left (y_{i} - \sum_{j = i+1}^{n} u_{ij} x_{j} \right ) / u_{ii}[/math]

Особо отметим, что вычисления сумм вида [math]y_{i} - \sum_{j = i+1}^{n} u_{ij} x_{j}[/math] производят в режиме накопления вычитанием из [math]y_{i}[/math] произведений [math]u_{ij} x_{j}[/math] для [math]j[/math] от [math]n[/math] до [math]i + 1[/math], c убыванием [math]j[/math]. Другие порядки выполнения суммирования приводят к резкому ухудшению параллельных свойств алгоритма, хотя, к сожалению, остаются кое-где в литературе и пакетах программ.

1.6 Последовательная сложность алгоритма

Для обратного хода метода Гаусса порядка n в последовательном (наиболее быстром) варианте требуется:

  • [math]n[/math] делений,
  • по [math]\frac{n^2-n}{2}[/math] умножений и сложений (вычитаний) — основная часть алгоритма.

При этом использование режима накопления требует совершения умножений и вычитаний в режиме двойной точности (или использования функции вроде DPROD в Фортране), что ещё больше увеличивает долю умножений и сложений/вычитаний во времени, требуемом для выполнения обратного хода метода Гаусса.

При классификации по последовательной сложности, таким образом, обратный ход метода Гаусса относится к алгоритмам с квадратической сложностью.

1.7 Информационный граф

Опишем граф алгоритма как аналитически, так и в виде рисунка.

Граф алгоритма состоит из двух групп вершин, расположенных в целочисленных узлах двух областей разной размерности.

описание

Первая группа вершин расположена в одномерной области, соответствующая ей операция вычисляет функцию деления. Естественно введённая единственная координата каждой из вершин [math]i[/math] меняется в диапазоне от [math]1[/math] до [math]n[/math], принимая все целочисленные значения.

Делимое в этой операции:

  • при [math]i = n[/math] — элемент входных данных, а именно [math]y_{n}[/math];
  • при [math]i \lt n[/math] — результат срабатывания операции, соответствующей вершине из второй группы, с координатами [math]i[/math], [math]i+1[/math].

Делитель для этой операции - элемент входных данных, а именно [math]u_{nn}[/math].

Результат срабатывания операции является выходным данным [math]x_{i}[/math].

Вторая группа вершин расположена в двумерной области, соответствующая ей операция [math]a - b * c[/math]. Естественно введённые координаты области таковы:

  • [math]i[/math] — меняется в диапазоне от [math]n-1[/math] до [math]1[/math], принимая все целочисленные значения;
  • [math]j[/math] — меняется в диапазоне от [math]n[/math] до [math]i+1[/math], принимая все целочисленные значения.

Аргументы операции следующие:

  • [math]a[/math]:
    • при [math]j = n[/math] элемент входных данных [math]y_{i}[/math];
    • при [math]j \lt n[/math] — результат срабатывания операции, соответствующей вершине из второй группы, с координатами [math]i, j+1[/math];
  • [math]b[/math] — элемент входных данных, а именно [math]u_{ij}[/math];
  • [math]c[/math] — результат срабатывания операции, соответствующей вершине из первой группы, с координатой [math]j[/math];

Результат срабатывания операции является промежуточным данным алгоритма.

Описанный граф можно посмотреть на рисунке, выполненном для случая [math]n = 5[/math]. Здесь вершины первой группы обозначены розовым цветом и знаком деления, вершины второй — зелёным цветом и буквой f. Изображена подача только входных данных из вектора [math]y_{i}[/math], подача элементов матрицы [math]U[/math], идущая во все вершины, на рисунке не представлена.