Уровень алгоритма

Прогонка, точечный вариант: различия между версиями

Материал из Алговики
Перейти к навигации Перейти к поиску
[непроверенная версия][непроверенная версия]
Строка 1: Строка 1:
 
{{algorithm
 
{{algorithm
 
| name              = Прогонка для трёхдиагональной матрицы, точечный вариант
 
| name              = Прогонка для трёхдиагональной матрицы, точечный вариант
| serial_complexity = <math>O(n)</math>
+
| serial_complexity = <math>8n-7</math>
 
| pf_height        = <math>O(n)</math>
 
| pf_height        = <math>O(n)</math>
 
| pf_width          = <math>2</math>
 
| pf_width          = <math>2</math>

Версия 17:24, 15 июля 2015


Прогонка для трёхдиагональной матрицы, точечный вариант
Последовательный алгоритм
Последовательная сложность [math]8n-7[/math]
Объём входных данных [math]4n-2[/math]
Объём выходных данных [math]n[/math]
Параллельный алгоритм
Высота ярусно-параллельной формы [math]O(n)[/math]
Ширина ярусно-параллельной формы [math]2[/math]


Основные авторы описания: А.В.Фролов


1 Свойства и структура алгоритмов

1.1 Общее описание алгоритма

Прогонка - один из вариантов метода исключения неизвестных в приложении к решению СЛАУ[1][2] вида [math]Ax = b[/math], где

[math] A = \begin{bmatrix} a_{11} & a_{12} & 0 & \cdots & \cdots & 0 \\ a_{21} & a_{22} & a_{23}& \cdots & \cdots & 0 \\ 0 & a_{32} & a_{33} & \cdots & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & a_{n-1 n-2} & a_{n-1 n-1} & a_{n-1 n} \\ 0 & \cdots & \cdots & 0 & a_{n n-1} & a_{n n} \\ \end{bmatrix}, x = \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \\ \end{bmatrix}, b = \begin{bmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{n} \\ \end{bmatrix} [/math]

Часто, однако, при изложении сути метода прогонки[3] элементы правой части и матрицы системы обозначают и нумеруют по-другому, например СЛАУ может иметь вид ([math]N=n+1[/math])

[math] A = \begin{bmatrix} c_{0} & -b_{0} & 0 & \cdots & \cdots & 0 \\ -a_{1} & c_{1} & -b_{1} & \cdots & \cdots & 0 \\ 0 & -a_{2} & c_{2} & \cdots & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & -a_{N-1} & c_{N-1} & -b_{N-1} \\ 0 & \cdots & \cdots & 0 & -a_{N} & c_{N} \\ \end{bmatrix}\begin{bmatrix} x_{0} \\ x_{1} \\ \vdots \\ x_{N} \\ \end{bmatrix} = \begin{bmatrix} f_{0} \\ f_{1} \\ \vdots \\ f_{N} \\ \end{bmatrix} [/math]

или, если записывать отдельно по уравнениям, то

[math] c_{0} y_{0} - b_{0} y_{1} = f_{0},\\ -a_{i} y_{i-1} + c_{i} y_{i} - b_{i} y_{i+1} = f_{i}, 1 \le i \le N-1, \\ -a_{N} y_{N-1} + c_{N} y_{N} = f_{N} [/math]

1.2 Математическое описание

В приведённых обозначениях в прогонке сначала выполняют её прямой ход - вычисляют коэффициенты

[math] \alpha_{1} = b_{0}/c_{0},\\ \beta_{1} = f_{0}/c_{0}, \\ \alpha_{i+1} = b_{i}/(c_{i}-a_{i}\alpha_{i}), \quad i = 1, 2, \cdots , N-1, \\ \beta_{i+1} = (f_{i}+a_{i}\beta_{i}/(c_{i}-a_{i}\alpha_{i}), \quad i = 1, 2, \cdots , N. [/math]

после чего вычисляют решение с помощью обратного хода

[math] y_{N} = \beta_{N+1}, \\ y_{i} = \alpha_{i+1} y_{i+1} + \beta_{i+1}, \quad i = N-1, N-2, \cdots , 1, 0. [/math]

1.3 Вычислительное ядро алгоритма

1.4 Макроструктура алгоритма

1.5 Описание схемы реализации последовательного алгоритма

1.6 Последовательная сложность алгоритма

1.7 Информационный граф

1.8 Описание ресурса параллелизма алгоритма

1.9 Описание входных и выходных данных

1.10 Свойства алгоритма

2 Программная реализация алгоритмов

2.1 Особенности реализации последовательного алгоритма

2.2 Описание локальности данных и вычислений

2.3 Возможные способы и особенности реализации параллельного алгоритма

2.4 Масштабируемость алгоритма и его реализации

2.5 Динамические характеристики и эффективность реализации алгоритма

2.6 Выводы для классов архитектур

2.7 Существующие реализации алгоритма

3 Литература

  1. Воеводин В.В. Вычислительные основы линейной алгебры. М.: Наука, 1977.
  2. Воеводин В.В., Кузнецов Ю.А. Матрицы и вычисления. М.: Наука, 1984.
  3. Самарский А.А., Николаев Е.С. Методы решения сеточных уравнений. М.: Наука, 1978.