Уровень алгоритма

Участник:Бротиковская Данута/Алгоритм k-means

Материал из Алговики
Перейти к навигации Перейти к поиску


Алгоритм k средних (k means)
Последовательный алгоритм
Последовательная сложность [math]O(n^3)[/math]
Объём входных данных [math]\frac{n (n + 1)}{2}[/math]
Объём выходных данных [math]\frac{n (n + 1)}{2}[/math]
Параллельный алгоритм
Высота ярусно-параллельной формы [math]O(n)[/math]
Ширина ярусно-параллельной формы [math]O(n^2)[/math]


Авторы страницы Данута Бротиковская и Денис Зобнин

Содержание

1 Свойства и структура алгоритма

1.1 Общее описание алгоритма

Алгоритм k средних (k means) -- наиболее популярный метод кластеризации. Был изобретен в 1950-х годах математиком Гуго Штейнгаузом и почти одновременно Стюартом Ллойдом. Особую популярность приобрел после публикации работы МакКуина в 1967. Цель алгоритма заключается в разделении N наблюдений на K кластеров таким образом, чтобы каждое наблюдение придележало ровно одному кластеру, расположенному на наименьшем расстоянии от наблюдения.

1.2 Математическое описание алгоритма

Дан набор из [math]n[/math] d-мерных векторов [math]X=\{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n\}[/math]. Алгоритм k средних разбивает набор [math]X[/math] на [math]k, k\lt =n[/math] наборов [math]S=\{S_1, S_2, ..., S_k\}, S_i \cap S_j= \varnothing, i \ne j, [/math] таким образом, чтобы минимизировать сумму квадратов расстояний от каждой точки кластера до его центра. Другими словами:

[math]\arg\min_{S} \sum\limits_{i=1}^k \sum\limits_{x \in S_i} \lVert \mathbf{x}- \mathbf{\mu}_i \rVert^2[/math],

где [math]\mathbf{\mu}_i[/math]- центры кластеров, [math]i=\overline{1,k}[/math]


Шаги алгоритма:

  1. Начальный шаг: инициализация кластеров

    Выбирается произвольное множество точек [math]\mu_i, i=\overline{1,k}[/math], рассматриваемых как начальные центры кластеров.

  2. Распределение векторов по кластерам

    [math]\forall \mathbf{x}_i \in X, i=\overline{1,n}: \mathbf{x}_i \in S_j \iff j=\arg\min_{k}||\mathbf{x}_i-\mathbf{\mu}_k||^2[/math]

  3. Пересчет центров кластеров

    [math] \forall i=\overline{1,k}: \widetilde{\mu_i} = \cfrac{1}{||S_i||}\sum_{x\in S_i}x[/math]

  4. Проверка условия останова:

       if [math]\exist i\in \overline{1,k}: \mu_i \ne \widetilde{\mu_i}[/math] then
           goto 2;
       else
           [math]FINISH[/math]
    

1.3 Вычислительное ядро алгоритма

Вычислительным ядром являются шаги 2 и 3 приведенного выше алгоритма: распределение векторов по кластерам и пересчет центров кластеров.

Распределение векторов по кластерам предполагает вычисление расстояний между каждым вектором [math]\mathbf{x}_i \in X, i= \overline{1,n},[/math] и центрами кластера [math]\mathbf{\mu}_j, j= \overline{1,k}[/math]. Таким образом, данный шаг предполагает [math]k*N[/math] вычислений расстояний между d-мерными векторами.

Пересчет центров кластеров предполагает [math]k[/math] вычислений центров масс [math]\mathbf{\mu}_i[/math] множеств [math]S_i, i=\overline{1,k}[/math], представленных выражением в шаге 3 представленного выше алгоритма.

1.4 Макроструктура алгоритма

1.5 Схема реализации последовательного алгоритма

algorithm k-means is
    1. Инициализировать центры кластеров [math]\mathbf{\mu}_i^{(1)}, i=\overline{1,k}[/math]
    2. Присвоить

1.6 Последовательная сложность алгоритма

1.7 Информационный граф

1.8 Ресурс параллелизма алгоритма

1.9 Входные и выходные данные алгоритма

Входные данные

  • Целое положительное число [math]k[/math]– количество кластеров.
  • Матрица из [math]n*d[/math] элементов – координат векторов (наблюдений).

Объем входных данных
1 целое число + [math]n*d[/math] вещественных чисел (при условии, что координаты – вещественные числа).

Выходные данные
Целые положительные числа – номера кластеров, соотвествующие каждому вектору (при условии, что нумерация кластеров начинается с 1).

Объем выходных данных
[math]n[/math] целых положительных чисел.

1.10 Свойства алгоритма

2 Программная реализация алгоритма

2.1 Особенности реализации последовательного алгоритма

2.2 Локальность данных и вычислений

2.2.1 Локальность реализации алгоритма

2.2.1.1 Структура обращений в память и качественная оценка локальности
2.2.1.2 Количественная оценка локальности

2.3 Возможные способы и особенности параллельной реализации алгоритма

2.4 Масштабируемость алгоритма и его реализации

2.4.1 Масштабируемость алгоритма

2.4.2 Масштабируемость реализации алгоритма

2.5 Динамические характеристики и эффективность реализации алгоритма

2.6 Выводы для классов архитектур

2.7 Существующие реализации алгоритма

3 Литература