Dijkstra's algorithm
Primary authors of this description: A.N.Daryin, Vad.V.Voevodin (Section 2.2).
Contents
- 1 Properties and structure of the algorithm
- 1.1 General description of the algorithm
- 1.2 Mathematical description of the algorithm
- 1.3 Computational kernel of the algorithm
- 1.4 Macro structure of the algorithm
- 1.5 Implementation scheme of the serial algorithm
- 1.6 Serial complexity of the algorithm
- 1.7 Information graph
- 1.8 Parallelization resource of the algorithm
- 1.9 Input and output data of the algorithm
- 1.10 Properties of the algorithm
- 2 Software implementation of the algorithm
- 2.1 Implementation peculiarities of the serial algorithm
- 2.2 Locality of data and computations
- 2.3 Possible methods and considerations for parallel implementation of the algorithm
- 2.4 Scalability of the algorithm and its implementations
- 2.5 Dynamic characteristics and efficiency of the algorithm implementation
- 2.6 Conclusions for different classes of computer architecture
- 2.7 Existing implementations of the algorithm
- 3 References
1 Properties and structure of the algorithm
1.1 General description of the algorithm
Dijkstra's algorithm[1] was designed for finding the shortest paths between nodes in a graph. For a given weighted digraph with nonnegative weights, the algorithm finds the shortest paths between a singled-out source node and the other nodes of the graph.
Dijkstra's algorithm (using Fibonacci heaps [2]) is executed in [math]O(m + n \ln n)[/math] time and, asymptotically, is the fastest of the known algorithms for this class of problems.
1.2 Mathematical description of the algorithm
Let [math]G = (V, E)[/math] be a given graph with arc weights [math]f(e)[/math] and the single-out source node [math]u[/math]. Denote by [math]d(v)[/math] the shortest distance between the source [math]u[/math] and the node [math]v[/math].
Suppose that one has already calculated all the distances not exceeding a certain number [math]r[/math], that is, the distances to the nodes in the set [math]V_r = \{ v \in V \mid d(v) \le r \}[/math]. Let
- [math] (v, w) \in \arg\min \{ d(v) + f(e) \mid v \in V, e = (v, w) \in E \}. [/math]
Then [math]d(w) = d(v) + f(e)[/math] and [math]v[/math] lies on the shortest path from [math]u[/math] to [math]w[/math].
The values [math]d^+(w) = d(v) + f(e)[/math], where [math]v \in V_r[/math], [math]e = (v, w) \in E[/math], are called expected distances and are upper bounds for the actual distances: [math]d(w) \le d^+(w)[/math].
Dijkstra's algorithm finds at each step the node with the least expected distance, marks this node as a visited one, and updates the expected distances to the ends of all arcs outgoing from this node.
1.3 Computational kernel of the algorithm
The basic computations in the algorithm concern the following operations for queues with priority:
- retrieve the minimum element (
delete_min
); - decrease the priority of an element (
decrease_key
).
1.4 Macro structure of the algorithm
Псевдокод алгоритма:
Входные данные: граф с вершинами V, рёбрами E с весами f(e); вершина-источник u. Выходные данные: расстояния d(v) до каждой вершины v ∈ V от вершины u. Q := new priority queue for each v ∈ V: if v = u then d(v) := 0 else d(v) := ∞ Q.insert(v, d(v)) while Q ≠ ∅: v := Q.delete_min() for each e = (v, w) ∈ E: if d(w) > d(v) + f(e): d(w) := d(v) + f(e) Q.decrease_key(w, d(w))
1.5 Implementation scheme of the serial algorithm
Конкретная реализация алгоритма Дейкстры определяется выбором используемого алгоритма очереди с приоритетом. В простейшем случае это может быть массив или список, поиск минимума в котором требует просмотра всех вершин. Более эффективным является использование кучи; наилучшую известную оценку сложности имеет вариант с использованием фибоначчиевой кучи[2].
Возможен вариант реализации, когда вершины добавляются в очередь не на этапе инициализации, а в момент первого посещения.
1.6 Serial complexity of the algorithm
Последовательная сложность алгоритма равна [math]O(C_1 m + C_2n)[/math], где
- [math]C_1[/math] – количество операций уменьшения расстояния до вершины;
- [math]C_2[/math] – количество операций вычисления минимума.
Оригинальный алгоритм Дейкстры использовал в качестве внутренней структуры данных списки, для которых [math]C_1 = O(1)[/math], [math]C_2 = O(n)[/math], так что общая сложность составляла [math]O(n^2)[/math].
При использовании фибоначчиевой кучи[2] время вычисления минимума сокращается до [math]C_2 = O(\ln n)[/math], так что общая сложность равна [math]O(m + n \ln n)[/math], что является асимптотически наилучшим известным результатом для данного класса задач.
1.7 Information graph
Приводится граф алгоритма для базовой реализации алгоритма Дейкстры на списках или массивах.
1.8 Parallelization resource of the algorithm
Алгоритм Дейкстры допускает эффективную параллелизацию[3], среднее время работы [math]O(n^{1/3}\ln n)[/math] с объёмом вычислений [math]O(n \ln n + m)[/math].
Алгоритм Δ-шагания может рассматриваться как параллельная версия алгоритма Дейкстры.
1.9 Input and output data of the algorithm
Входные данные: взвешенный граф [math](V, E, W)[/math] ([math]n[/math] вершин [math]v_i[/math] и [math]m[/math] рёбер [math]e_j = (v^{(1)}_{j}, v^{(2)}_{j})[/math] с весами [math]f_j[/math]), вершина-источник [math]u[/math].
Объём входных данных: [math]O(m + n)[/math].
Выходные данные (возможные варианты):
- для каждой вершины [math]v[/math] исходного графа – последнее ребро [math]e^*_v = (w, v)[/math], лежащее на кратчайшем пути от вершины [math]u[/math] к [math]v[/math], или соответствующая вершина [math]w[/math];
- для каждой вершины [math]v[/math] исходного графа – суммарный вес [math]f^*(v)[/math] кратчайшего пути от от вершины [math]u[/math] к [math]v[/math].
Объём выходных данных: [math]O(n)[/math].
1.10 Properties of the algorithm
2 Software implementation of the algorithm
2.1 Implementation peculiarities of the serial algorithm
2.2 Locality of data and computations
2.2.1 Locality of implementation
2.2.1.1 Structure of memory access and a qualitative estimation of locality
На рис. 1 представлен профиль обращений в память для реализации алгоритма Дейкстры. Первое, что бросается в глаза, – большая разрозненность обращений. В частности, значительные области выше и ниже фрагмента 2 остаются пустыми, при этом сами обращения объединены лишь в небольшие группы. Это говорит о низкой эффективности, поскольку: а) повторные обращения практически отсутствуют и либо происходят через значительный промежуток времени; 2) расстояния между идущими подряд обращениями может быть очень большим.
Однако при ближайшем рассмотрении может оказаться, что такие участки обладают высокой локальностью и состоят из значительного числа обращений. Более того, на общем профиле есть несколько областей (фрагменты 1 и 2), в которых обращения хорошо локализованы. Необходимо исследовать отдельные участки более подробно.
Перейдем к изучению фрагмента 1 (рис. 2), в рамках которого выполняются обращения к двум небольшим массивам. Можно увидеть, что здесь задействованы только примерно 500 элементов, при этом к ним выполняется около 100 тысяч обращений. Весь профиль составляет около 120 тысяч обращений, поэтому получается, что подавляющая их часть выполняется именно к этим элементам.
Поскольку число элементов невелико, локальность в данном случае заведомо будет достаточно высокой, независимо от структуры самого фрагмента. Однако на рис. 2, где представлены два участка из фрагмента 1, можно увидеть, что фрагмент в основном состоит из последовательных переборов, при этом данные зачастую задействованы повторно через не очень большие промежутки. Все это позволяет говорить, что данный фрагмент обладает высокой как пространственной, так и временной локальностью.
Рассмотрим теперь более подробно фрагмент 2 (рис. 4), в рамках которого выполняются обращения к еще служебному массиву. Здесь профиль состоит из двух этапов. На первом заметен достаточно хаотичный разброс обращений, напоминающий случайный доступ. На втором обращения образуют подобие последовательного перебора. В целом такой профиль характеризуется очень низкой временной локальностью (повторные обращения практически или полностью отсутствуют) и достаточно низкой пространственной локальностью (из-за случайного доступа на первом этапе).
Заметим, что при этом число задействованных элементов здесь больше, чем во фрагменте 1, однако число обращений гораздо меньше.
Далее остаются для рассмотрения два массива (область между фрагментами 1 и 2 и область ниже фрагмента 2). Характер обращений к этим массивам во многом похож, поэтому достаточно изучить более подробно только один из них.
Фрагмент 3 рассмотрен на рис. 5. Этот участок отражают достаточно большую область, что не позволяет проанализировать профиль вплоть до отдельных обращений, однако здесь этого и не требуется. Из данного фрагмента видно, что основу профиля составляют участки с последовательным (или с небольшим шагом) перебором, состоящие из небольшого числа элементов – выделенный желтым самый большой фрагмента участок состоит всего из пары сотен обращений. При этом между разными участками расстояние может быть существенным. Все это говорит об очень низкой локальности (как пространственной, так и временной) в случае двух рассматриваемых массивов.
В целом, несмотря на положительный вклад массивов из фрагмента 1, локальность общего профиля должна быть достаточно низкой, вследствие неэффективного использования данных в остальной части профиля.
2.2.1.2 Quantitative estimation of locality
Основной фрагмент реализации, на основе которого были получены количественные оценки, приведен здесь (функция Kernel). Условия запуска описаны здесь.
Первая оценка выполняется на основе характеристики daps, которая оценивает число выполненных обращений (чтений и записей) в память в секунду. Данная характеристика является аналогом оценки flops применительно к работе с памятью и является в большей степени оценкой производительности взаимодействия с памятью, чем оценкой локальности. Однако она служит хорошим источником информации, в том числе для сравнения с результатами по следующей характеристике cvg.
На рисунке 6 приведены значения daps для реализаций распространенных алгоритмов, отсортированные по возрастанию (чем больше daps, тем в общем случае выше производительность). Можно увидеть, что производительность работы с памятью достаточно низка. Это неудивительно, поскольку реализации алгоритмов над графами почти всегда обладают низкой эффективностью вследствие нерегулярности доступа к данным, что мы и увидели при анализе профиля обращений.
Вторая характеристика – cvg – предназначена для получения более машинно-независимой оценки локальности. Она определяет, насколько часто в программе необходимо подтягивать данные в кэш-память. Соответственно, чем меньше значение cvg, тем реже это нужно делать, тем лучше локальность.
На рисунке 7 приведены значения cvg для того же набора реализаций, отсортированные по убыванию (чем меньше cvg, тем в общем случае выше локальность). Можно увидеть, что в данном случае значение cvg хорошо коррелирует с оценкой производительности и отражает низкую локальность, что соответствует выводам, сделанным при качественной оценке локальности.
2.3 Possible methods and considerations for parallel implementation of the algorithm
2.4 Scalability of the algorithm and its implementations
2.4.1 Scalability of the algorithm
2.4.2 Scalability of of the algorithm implementation
Проведём исследование масштабируемости параллельной реализации алгоритма согласно методике. Исследование проводилось на суперкомпьютере "Ломоносов"[4] Суперкомпьютерного комплекса Московского университета. Набор и границы значений изменяемых параметров запуска реализации алгоритма:
- число процессоров [4, 8 : 128] со значениями квадрата целого числа;
- размер графа [16000:64000] с шагом 16000.
На следующем рисунке приведен график производительности выбранной реализации алгоритма в зависимости от изменяемых параметров запуска.
В силу особенностей параллельной реализации алгоритма производительность в целом достаточно низкая и с ростом числа процессов увеличивается медленно, а при приближении к числу процессов 128 начинает уменьшаться. Это объясняется использованием коллективных операций на каждой итерации алгоритма и тем, что затраты на коммуникационные обмены существенно возрастают с ростом числа использованных процессов. Вычисления на каждом процессе проходят достаточно быстро и потому декомпозиция графа слабо компенсирует эффект от затрат на коммуникационные обмены.
Исследованная параллельная реализация на языке C
2.5 Dynamic characteristics and efficiency of the algorithm implementation
Для проведения экспериментов использовалась реализация алгоритма Дейкстры. Все результаты получены на суперкомпьютере "Ломоносов". Использовались процессоры Intel Xeon X5570 с пиковой производительностью в 94 Гфлопс, а также компилятор intel 13.1.0. На рисунках показана эффективность реализации алгоритма Дейкстры на 32 процессах.
На графике загрузки процессора видно, что почти все время работы программы уровень загрузки составляет около 50%. Это указывает на равномерную загруженность вычислениями процессоров, при использовании 8 процессов на вычислительный узел и без использования Hyper Threading.
На Рисунке 10 показан график количества операций с плавающей точкой в секунду. На графике видна общая очень низкая производительность вычислений около 250 Kфлопс в пике и около 150 Кфлопс в среднем по всем узлам. Это указывает то, что в программе почти все вычисления производятся с целыми числами.
На графике кэш-промахов первого уровня видно, что число промахов очень большое для нескольких ядер и находится на уровне 15 млн/сек (в пике до 60 млн/сек), что указывает на интенсивные вычисления в части процессов. В среднем по всем узлам значения значительно ниже (около 9 млн/сек). Это указывает на неравномерное распределение вычислений.
На графике кэш-промахов третьего уровня видно, что число промахов очень немного и находится на уровне 1,2 млн/сек, однако в среднем по всем узлам значения около 0,5 млн/сек. Соотношение кэш промахов L1|L3 для процессов с высокой производительностью доходит до 60, однако в среднем около 30. Это указывает на очень хорошую локальность вычислений как у части процессов, так и для всех в среднем, и это является признаком высокой производительности.
На графике обращений в память видна достаточно типичная картина для таких приложений. Активность чтения достаточно низкая, что в совокупности с низкими значениями кэш-промахов L3 указывает на хорошую локальность. Хорошая локальность приложения так же указывает на то, что значения около 1 млн/сек для задачи является результатом высокой производительности вычислений, хотя и присутствует неравномерность между процессами.
На графике записей в память видна похожая картина неравномерности вычислений, при которой одновременно активно выполняют запись только несколько процессов. Это коррелирует с другими графиками выполнения. Стоит отметить, достаточно низкое число обращений на запись в память. Это указывает на хорошую организацию вычислений, и достаточно эффективную работу с памятью.
На графике скорости передачи данных по сети Infiniband наблюдается достаточно высокая скорость передачи данных в байтах в секунду. Это говорит о том, что процессы между собой обмениваются интенсивно и вероятно достаточно малыми порциями данных, потому как производительность вычислений высока. Стоит отметить, что скорость передачи отличается между процессами, что указывает на дисбаланс вычислений.
На графике скорости передачи данных в пакетах в секунду наблюдается крайне высокая интенсивность передачи данных выраженная в пакетах в секунду. Это говорит о том, что, вероятно, процессы обмениваются не очень существенными объемами данных, но очень интенсивно. Используются коллективные операции на каждом шаге с небольшими порциями данных, что объясняет такую картину. Так же наблюдается почти меньший дизбаланс между процессами чем наблюдаемый в графиках использования памяти и вычислений и передачи данных в байтах/сек. Это указывает на то, что процессы обмениваются по алгоритму одинаковым числом пакетов, однако получают разные объемы данных и ведут неравномерные вычисления.
На графике числа процессов, ожидающих вхождения в стадию счета (Loadavg), видно, что на протяжении всей работы программы значение этого параметра постоянно и приблизительно равняется 8. Это свидетельствует о стабильной работе программы с загруженными вычислениями всеми узлами. Это указывает на очень рациональную и статичную загрузку аппаратных ресурсов процессами. И показывает достаточно хорошую эффективность выполняемой реализации. В целом, по данным системного мониторинга работы программы можно сделать вывод о том, что программа работала достаточно эффективно, и стабильно. Использование памяти очень интенсивное, а использование коммуникационной среды крайне интенсивное, при этом объемы передаваемых данных не являются высокими. Это указывает на требовательность к латентности коммуникационной среды алгоритмической части программы. Низкая эффективность связана судя по всему с достаточно высоким объемом пересылок на каждом процессе, интенсивными обменами сообщениями.
2.6 Conclusions for different classes of computer architecture
2.7 Existing implementations of the algorithm
- C++: Boost Graph Library (функции
dijkstra_shortest_paths
,dijkstra_shortest_paths_no_color_map
), сложность [math]O(m + n \ln n)[/math]. - C++, MPI: Parallel Boost Graph Library:
- функция
eager_dijkstra_shortest_paths
– непосредственная реализация алгоритма Дейкстры; - функция
crauser_et_al_shortest_paths
– реализация алгоритма Дейкстры в виде алгоритма из статьи Краузера и др.[5]
- функция
- Python: NetworkX (функция
single_source_dijkstra
). - Python/C++: NetworKit (класс
networkit.graph.Dijkstra
).
3 References
- ↑ Dijkstra, E W. “A Note on Two Problems in Connexion with Graphs.” Numerische Mathematik 1, no. 1 (December 1959): 269–71. doi:10.1007/BF01386390.
- ↑ 2.0 2.1 2.2 Fredman, Michael L, and Robert Endre Tarjan. “Fibonacci Heaps and Their Uses in Improved Network Optimization Algorithms.” Journal of the ACM 34, no. 3 (July 1987): 596–615. doi:10.1145/28869.28874.
- ↑ Crauser, A, K Mehlhorn, U Meyer, and P Sanders. “A Parallelization of Dijkstra's Shortest Path Algorithm,” Proceedings of Mathematical Foundations of Computer Science / Lecture Notes in Computer Science, 1450:722–31, Berlin, Heidelberg: Springer, 1998. doi:10.1007/BFb0055823.
- ↑ Воеводин Вл., Жуматий С., Соболев С., Антонов А., Брызгалов П., Никитенко Д., Стефанов К., Воеводин Вад. Практика суперкомпьютера «Ломоносов» // Открытые системы, 2012, N 7, С. 36-39.
- ↑ Crauser, A, K Mehlhorn, U Meyer, and P Sanders. “A Parallelization of Dijkstra's Shortest Path Algorithm,” Proceedings of Mathematical Foundations of Computer Science / Lecture Notes in Computer Science, 1450:722–31, Berlin, Heidelberg: Springer, 1998. doi:10.1007/BFb0055823.