Methods for solving tridiagonal SLAEs
Contents
- 1 SLAEs with tri-diagonal matrices
- 2 Methods for solving SLAEs with tri-diagonal matrices
- 3 References
1 SLAEs with tri-diagonal matrices
Numerous mathematical models of one-dimensional phenomena can be reduced to solving systems of linear algebraic equations (SLAEs) [1][2] [math]Ax = b[/math] with tri-diagonal matrices
- [math] A = \begin{bmatrix} a_{11} & a_{12} & 0 & \cdots & \cdots & 0 \\ a_{21} & a_{22} & a_{23}& \cdots & \cdots & 0 \\ 0 & a_{32} & a_{33} & \cdots & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & a_{n-1 n-2} & a_{n-1 n-1} & a_{n-1 n} \\ 0 & \cdots & \cdots & 0 & a_{n n-1} & a_{n n} \\ \end{bmatrix} [/math]
2 Methods for solving SLAEs with tri-diagonal matrices
Here, we review various methods for solving SLAEs with tri-diagonal matrices.
2.1 Methods based on the conventional LU-decomposition of a tri-diagonal matrix A into the product of two bi-diagonal matrices
Часть методов основана на LU-разложении исходной матрицы системы и последующем решении образовавшихся двухдиагональных СЛАУ. Подобный подход позволяет при повторном решении новой СЛАУ с разложенной матрицей не повторять разложение, а выполнять только решения двухдиагональных СЛАУ.
2.1.1 Методы с линейным временем вычислений
2.1.1.1 Методы прогонки
2.1.1.1.1 Монотонная прогонка
Монотонная прогонка[3] – последовательный алгоритм решения трёхдиагональной СЛАУ – является частным случаем общего метода исключения неизвестных, однако получила специальное название из-за распространённости задач такого типа в прикладных исследованиях. В математической литературе[3] указано, что применение метода прогонки эквивалентно последовательному решению двух задач: [math]LU[/math]-разложению трёхдиагональной матрицы [math]A[/math] на две двухдиагональные с помощью компактной схемы метода Гаусса и затем решению двух СЛАУ с двухдиагональными матрицами с помощью обычной подстановки. Метод почти последователен (исключением является то, что решение первой из двухдиагональных СЛАУ можно выполнять почти параллельно с разложением трёхдиагональной матрицы). При повторении прогонки для новой СЛАУ с той же матрицей алгоритм повторной прогонки полностью последователен.
2.1.1.1.2 Встречная прогонка
Встречная прогонка[3] - тоже является частным случаем общего метода исключения неизвестных. Получена из алгоритмов монотонной прогонки за счёт идеи встречного (откуда и её название) исключения неизвестных в уравнениях "с начала" и "с конца" СЛАУ.
2.1.2 Метод с логарифмическим временем вычислений
2.1.2.1 Метод сдваивания Стоуна
Метод сдваивания Стоуна[4][5] разработан в начале 70-х гг. 20го века. Как и прогонка, которую он должен был заменить, метод сдваивания Стоуна для решения СЛАУ с трёхдиагональными матрицами состоит из двух отдельно разработанных частей: алгоритма сдваивания Стоуна для LU-разложения трёхдиагональной матрицы и метода сдваивания Стоуна для решения двудиагональных СЛАУ. По ряду причин, изложенных на соответствующих страницах, первый из них не применяется на практике, а второй - малораспространён.
2.1.3 Метод с временем вычислений меньше линейного
2.1.3.1 Последовательно-параллельный вариант решения трёхдиагональной СЛАУ с LU-разложением и обратными подстановками
Последовательно-параллельный вариант решения трёхдиагональной СЛАУ с LU-разложением и обратными подстановками предложен в 2015 г.[6] в качестве альтернативы другим параллельным алгоритмам решения трёхдиагональных СЛАУ. Как и метод Стоуна, основан на [math]LU[/math]-разложении матрицы исходной СЛАУ с использованием ассоциативности операции матричного умножения и состоит из двух существенно различных по свойствам частей: последовательно-параллельного алгоритма для LU-разложения трёхдиагональной матрицы и последовательно-параллельного варианта обратной подстановки. Первая из частей метода спроектирована с использованием нормировки, что делает область устойчивости метода гораздо шире, чем у рекурсивного сдваивания Стоуна. В то же время строгое исследование области устойчивости пока не проведено. Как и алгоритм Стоуна, имеет ограниченную применимость для блочно-трёхдиагональной реализации.
2.2 Другие методы
Эта часть методов не основана на LU-разложении исходной матрицы системы. Тем не менее, в каждом из методов есть такая (особенная для каждого метода) часть, которая зависит только от элементов матрицы систем. Её при повторных решениях СЛАУ с той же матрицей можно использовать уже ранее вычисленную. Это делает повторные решения довольно экономичными.
2.2.1 Методы с логарифмическим или полулогарифмическим временем решения
2.2.1.1 Метод циклической редукции
Метод циклической редукции впервые появился в разных вариациях на рубеже 60-70-х гг. XX века[7][8][5] и до настоящего времени является, пожалуй, самым популярным из параллельных замен метода прогонки. Несмотря на то, что для распараллеливания в нём использованы избыточные по сравнению с прогонкой вычисления, пригоден как для решения одиночных СЛАУ, так и для многих СЛАУ с одной и той же матрицей. Диапазон устойчивости находится в тех же границах, что и у классической прогонки; существует и блочный аналог метода.
2.2.1.2 Метод дихотомии
Метод дихотомии предложен в 2010 г.[9] и предназначен в основном для решения большого количества СЛАУ с одной и той же трёхдиагональной матрицей. Для решения одиночных трёхдиагональных СЛАУ слишком тяжеловесен, в силу того, что количество операций O(n) выполняется при подготовительной работе на каждом из процессоров.
2.2.2 Методы с меньшим линейного временем решения
2.2.2.1 Метод редукции
Метод редукции нециклического вида, несмотря на то, что известен давно[10], обычно рассматривается как "недоделка" циклической редукции, а не самостоятельный параллельный алгоритм, в частности, из-за избыточных вычислений. Вместе с тем для большей сбалансированности и меньших простоев оборудования именно нециклическая редукция должна рассматриваться как предпочтительная[11].
2.2.2.2 Метод окаймления
Метод окаймления по своей идее восходит к применению принципа "разделяй и властвуй", аналоги для ленточных матриц появились ещё в 2006г.[12], а, возможно, и ранее. Позже, при выходе публикации про Последовательно-параллельный вариант решения трёхдиагональной СЛАУ с LU-разложением и обратными подстановками в ответ на замечание рецензента о схожести его схемы с методом окаймления автором было вставлено замечание о разных структурах образующихся разложений[6].
3 References
- ↑ Воеводин В.В. Вычислительные основы линейной алгебры. М.: Наука, 1977.
- ↑ Воеводин В.В., Кузнецов Ю.А. Матрицы и вычисления. М.: Наука, 1984.
- ↑ 3.0 3.1 3.2 Самарский А.А., Николаев Е.С. Методы решения сеточных уравнений. М.: Наука, 1978.
- ↑ Stone H.S. An Efficient Parallel Algorithm for the Solution of a Tridiagonal Linear System of Equations // J. ACM, Vol. 20, No. 1 (Jan. 1973), P. 27-38.
- ↑ 5.0 5.1 Stone H.S. Parallel Tridiagonal Equation Solvers // ACM Trans. on Math. Software, Vol. 1, No. 4 (Dec. 1975), P. 289-307.
- ↑ 6.0 6.1 А.В.Фролов. Ещё один метод распараллеливания прогонки с использованием ассоциативности операций // Суперкомпьютерные дни в России: Труды международной конференции (28-29 сентября 2015 г., г. Москва). – М.: Изд-во МГУ, 2015. с. 151-162
- ↑ Buneman O. A Compact Non-iterative Poisson Solver // Rep. 294, Inst. for Plasma Res., Stanford U., Stanford, Calif., 1969.
- ↑ Buzbee B.L., Golub G.H., Nielson C.W. On Direct Methods for Solving Poisson's Equations // SIAM J. Numer. Anal., Vol. 7, No. 4 (Dec. 1970), P. 627-656.
- ↑ Terekhov Andrew. Parallel dichotomy algorithm for solving tridiagonal system of linear equations with multiple right-hand sides. // Parallel Comput. 2010. Vol. 36. N. 8. pp. 423–438
- ↑ Ильин В.П., Кузнецов Ю.И. Трехдиагональные матрицы и их приложения. М.: Наука. Главная редакция физико-математической литературы, 1985г. ,208 с.
- ↑ А.В.Фролов "Нециклическая редукция - незаслуженно забытый метод?" // Параллельные вычислительные технологии (ПаВТ'2016): труды международной научной конференции (г. Архангельск, 28 марта - 1 апреля 2016 г.). Челябинск: Издательский центр ЮУрГУ, 2016. С. 800.
- ↑ А.В.Попов. Решение задач линейной алгебры с разреженными симметричными матрицами на MIMD-компьютере // Искусственный интеллект (Донецк). — 2006, №4, с. 670-679