Algorithm level

The serial-parallel summation method

From Algowiki
Jump to navigation Jump to search


Primary authors of this description: A.V.Frolov.

1 Properties and structure of the algorithm

1.1 General description of the algorithm

The serial-parallel method is used as a substitute for the block implementation of calculating long sequences of associative operations (for instance, mass summations). The method became popular due to the following features: a) it realizes the conversion of single cycles into double ones; b) on serial computers and for certain operations, the method was able to reduce the impact of round-off errors at the results. Here, we describe its version for summing numbers.

1.2 Mathematical description of the algorithm

Input data: one-dimensional array of [math]N[/math] numbers.

Output data: sum of the array's elements.

Formulas of the method: the integer [math]N[/math] is represented as [math]N = (p - 1) k + q[/math], where [math]p[/math] is the number of processors, [math]k = \lceil \frac{N}{p} \rceil[/math], and [math]q = N - k (p - 1)[/math].

Then the [math]i[/math]-th processor (where [math]i \lt p[/math]) calculates, in a serial mode, the sum of array elements with the indices ranging from [math](i - 1) k + 1[/math] to [math]i k[/math].

[math]S_i = \sum_{j = 1}^k x_{k (i - 1) + j}[/math]

The [math]p[/math]-th processor calculates, in a serial mode, the sum of array elements with the indices ranging from [math](p - 1) k + 1[/math] to [math](p - 1) k + q[/math].

[math]S_p = \sum_{j = 1}^q x_{k (p - 1) + j}[/math]

When this process is completed, the processors exchange their data, and one of them (or each of them if the result is later needed to all the processors) adds the partial sums in a serial mode.

[math]\sum_{i = 1}^p S_i[/math]

1.3 Computational kernel of the algorithm

The computational kernel of the serial-parallel summation method can be compiled from multiple calculations of partial sums (altogether [math]p[/math] calculations)

[math]S_i = \sum_{j = 1}^k x_{k (i - 1) + j}[/math]

plus the addition of these partial sums

[math]\sum_{i = 1}^p S_i[/math]

1.4 Macro structure of the algorithm

As already noted in the description of the computational kernel, the basic part of the method is compiled of multiple calculations (altogether [math]p + 1[/math] calculations) of the sums

[math]S_i = \sum_{j = 1}^k x_{k (i - 1) + j}[/math] and
[math]\sum_{i = 1}^p S_i[/math]

1.5 Implementation scheme of the serial algorithm

The formulas of the method are given above. The summations can be performed in different ways, with indices of the summands either increasing or decreasing. When no special reasons for reordering are present, the natural order (i.e., increasing indices) is usually used.

1.6 Serial complexity of the algorithm

Let an array of [math]N[/math] elements must be summed. Various decompositions of [math]N[/math] differ from each other merely by arrangements of parentheses in the summation formula. The number of operations is the same for all the arrangements and is equal to [math]N - 1[/math]. Therefore, in terms of the number of serial operations, the method should be regarded as a linear complexity algorithm.

1.7 Information graph

The algorithm graph is shown in fig.1 in the case where an array of size 24 is summed.

Figure 1. The serial-parallel summation method


Interactive representation of the algorithm graph in the case where an array of size 24 is summed. No input and output data are shown.

[[Media:Media:Example.ogg]]

1.8 Parallelization resource of the algorithm

In order to sum an array of size [math]n[/math] by using the serial-parallel summation method in a parallel mode, the following layers must be performed:

  • [math]k - 1[/math] layers for the summation of parts of the array ([math]p[/math] branches),
  • [math]p - 1[/math] summation layers (a single serial branch).

Thus, in the parallel version, the critical path of the algorithm (and the corresponding height of the parallel form) depends on the chosen splitting of the array. In the optimal case ([math]p = \sqrt{n}[/math]), the height of the parallel form is [math]2 \sqrt{n} - 2[/math].

Consequently, in terms of the parallel form height, the serial-parallel summation method is qualified as an algorithm of the square root complexity. In terms of the parallel form width, it also has the square root complexity.

1.9 Input and output data of the algorithm

Input data: array [math]\vec{x}[/math] (with elements [math]x_i[/math]).

Further restrictions: none.

Size of the input data: [math]N[/math].

Output data: sum of the array's elements.

Size of the output data: single scalar.

1.10 Properties of the algorithm

It is clearly seen that, in the case of unlimited resources, the ratio of the serial to parallel complexity has the square root order (the ratio of the linear to square root complexity). The computational power of the algorithm, understood as the ratio of the number of operations to the total size of the input and output data, is only 1 (the size of the input and output data is equal to the number of operations). The algorithm is not completely determined because the partial summations can be organized in different ways. Choosing the order of performing associative operations in accordance with the peculiarities of the input data may reduce the impact of round-off errors at the result. The edges of the information graph are local.

2 Software implementation of the algorithm

2.1 Implementation peculiarities of the serial algorithm

The simplest variant (with no order of summation changed) can be written in Fortran as follows:

	DO  I = 1, P
		S (I) = X(K*(I-1)+1)
		IF (I.LQ.P) THEN
			DO J = 2,K
				S(I)=S(I)+X(K*(I-1)+J)
		             END DO
		ELSE
			DO J = 2,Q
				S(I)=S(I)+X(K*(I-1)+J)
		             END DO
		END IF
	END DO
	SUM = S(1)
	DO I = 2, P
		SUM = SUM + S(I)
	END DO

One can also write a similar scheme with the summations performed in the reverse order. We emphasize that, for both schemes, the algorithm graph is the same!

2.2 Possible methods and considerations for parallel implementation of the algorithm

In its pure form, the serial-parallel method for summation an array is rarely used. Usually, modifications of this method are met in practice. They are designed for calculating the dot product (in which case, products of the elements of two arrays are summed rather than the elements of a single array) or the uniform norm (instead of the elements of an array, their moduli are summed), etc. The method is applied in the BLAS library for calculating the dot product in a particular case (where one of the dimensions is 5); however, the aim apparently was not a parallelization but an optimization of functioning the processor registers. Meanwhile, partitions of an array for calculating partial sums may be useful for better using the cache at individual nodes.

2.3 Run results

2.4 Conclusions for different classes of computer architecture

2.5 Existing implementations of the algorithm

3 References