User:GrishinaAnna/Метод Якоби вычисления сингулярных чисел и векторов
1 Свойства и структура алгоритма
1.1 Общее описание алгоритма
Метод Якоби позволяет получить разложение произвольной матрицы [math]G[/math] размера [math]n[/math]×[math]n[/math] в виде [math]G=USV^*[/math], где [math]U[/math] и [math]V[/math] — унитарные матрицы, [math]S[/math] — диагональная матрица с вещественными положительными числами на диагонали. Диагональные элементы матрицы называются сингулярными числами матрицы [math]G[/math], а столбцы матриц и левыми и правыми сингулярными векторами соответственно.
В основе метода лежит утверждение о том, что собственными значениями симметричной матрицы [math]G^TG[/math] являются квадраты сингулярных чисел, а соответствующие ортонормированные собственные векторы – правыми сингулярными векторами. Для вычисления собственных значений и собственных векторов симметричной матрицы [math]G^TG[/math] используется метод односторонних вращений (неявный метод Якоби), на каждом шаге которого вычисляется вращение Якоби [math]J[/math]. С его помощью матрица [math]G^TG[/math] неявно пересчитывается в [math]J^TG^TGJ[/math]. Вращение выбрано так, чтобы пара внедиагональных элементов из [math]G^TG[/math] обратилась в нуль в матрице [math]J^TG^TGJ[/math]. Однако, ни [math]G^TG[/math], ни [math]J^TG^TGJ[/math] не вычисляются в явном виде; вместо них вычисляется матрица [math]GJ[/math], которая подается на вход на следующем шаге алгоритма. Алгоритм выполняется, пока [math]G^TG[/math] не станет достаточно близка к диагональной матрице, после чего вычисляются собственные числа матрицы [math]G[/math], полученной на последнем шаге, которые принимаются за сингулярные числа. Правые сингулярные векторы получаются в результате накопления произведений вращений Якоби.
Метод Якоби для вычисления сингулярных значений и векторов является самым медленным из имеющихся, но тем не менее, интерес к нему сохраняется, потому что для некоторых типов матриц [math]G[/math] он способен вычислять числа и сингулярные векторы намного точнее, чем другие методы. Так, например, метод Якоби вычисляет сингулярные числа матрицы [math]G[/math] с высокой точностью, если [math]G[/math] может быть представлена в виде [math]G=DX[/math], где [math]D[/math] – диагональная матрица, а [math]X[/math] – хорошо обусловлена. Выигрыш метода Якоби в этом случае перед другими алгоритмами объясняется следующим образом: в методе Якоби заданная матрица обрабатывается без предварительного приведения к двухдиагональному виду, в то время как другие алгоритмы включают в себя приведение матрицы к двухдиагональной форме, из-за чего и теряют все верные разряды во всех сингулярных числах, кроме старшего.
Следует иметь в виду, что метод Якоби эффективен при не очень больших размерах матрицы – максимум до [math]n[/math] ~ [math]100[/math]. Дело не только в том, что метод не будет сходиться за конечное время, дело еще и в излишне большом количестве операций, которое приведет к ошибкам округления и потере точности.
1.2 Математическое описание алгоритма
Исходные данные: матрица [math]G[/math] размера [math]n[/math]×[math]n[/math]. Вычисляемые данные: Матрица [math]S=\sigma_{i}[/math], где [math]\sigma_{i}[/math] - сингулярные числа, матрица [math]U[/math] левых сингулярных векторов и матрица [math]V[/math] правых сингулярных векторов. Описание используемой в алгоритме процедуры одностороннего вращения входной матрицы G One-Sided-Jacobi-Rotation (G, j, k):
Вычисляемые данные: Матрица S = diag(σi ), где σi - сингулярные числа, матрица U левых сингулярных векторов и матрица V правых сингулярных векторов. Описание используемой в алгоритме процедуры одностороннего вращения входной матрицы G One-Sided-Jacobi-Rotation (G, j, k):