Метод Холецкого (нахождение симметричного треугольного разложения): различия между версиями
[непроверенная версия] | [непроверенная версия] |
Konshin (обсуждение | вклад) |
Konshin (обсуждение | вклад) |
||
Строка 50: | Строка 50: | ||
=== Приближенное разложение Холецкого второго порядка IC(<math>\tau_1,\tau_2</math>) === | === Приближенное разложение Холецкого второго порядка IC(<math>\tau_1,\tau_2</math>) === | ||
− | === Комбинация разложений Холецкого IC(k,tau) и IC(tau,m) === | + | === Комбинация разложений Холецкого IC(<math>k,\tau</math>) и IC(<math>\tau,m</math>) === |
== Использование разложения Холецкого в параллельных итерационных алгоритмах == | == Использование разложения Холецкого в параллельных итерационных алгоритмах == |
Версия 12:25, 18 марта 2015
Содержание
- 1 Разложение Холецкого (метод квадратного корня), базовый точечный вещественный вариант для плотной симметричной положительно-определённой матрицы
- 2 Разложение Холецкого, блочный вещественный вариант для плотной симметричной положительно-определённой матрицы
- 3 Разложение Холецкого, точечный вещественный вариант для разреженной симметричной положительно-определённой матрицы
- 4 Разложение Холецкого, блочный вещественный вариант для разреженной симметричной положительно-определённой матрицы
- 5 Разложение Холецкого для эрмитовой матрицы
- 6 Использование разложения Холецкого в итерационных методах
- 6.1 Ограничивание заполнения в разложении Холецкого
- 6.2 Неполное разложение Холецкого по позициям IC([math]k[/math])
- 6.3 Приближенное разложение Холецкого по значениям IC([math]\tau[/math])
- 6.4 Приближенное разложение Холецкого второго порядка IC([math]\tau_1,\tau_2[/math])
- 6.5 Комбинация разложений Холецкого IC([math]k,\tau[/math]) и IC([math]\tau,m[/math])
- 7 Использование разложения Холецкого в параллельных итерационных алгоритмах
- 7.1 Переупорядочивания для выделения блочности
- 7.2 Разложение в независимых блоках
- 7.3 Разложение в сепараторах
- 7.4 Иерархические и вложенные алгоритмы
- 7.5 Блочный метод Якоби (без перекрытия блоков, Block Jacobi - BJ)
- 7.6 Адитивный метод Шварца (Additive Schwarz - AS)
- 7.7 Блочный метод неполного обратного разложения Холецкого (BIIC)
- 8 Решение линейной системы с треугольной матрицей
- 8.1 Решение системы с плотной верхнетреугольной матрицей
- 8.2 Решение системы с плотной нижнетреугольной матрицей
- 8.3 Решение системы с разреженной верхнетреугольной матрицей
- 8.4 Решение системы с разреженной нижнетреугольной матрицей
- 8.5 Решение системы с комплексной треугольной матрицей
- 8.6 Решение систем с блочноокаймленными треугольными матрицами
1 Разложение Холецкого (метод квадратного корня), базовый точечный вещественный вариант для плотной симметричной положительно-определённой матрицы
Разложение Холецкого (метод квадратного корня), базовый точечный вещественный вариант для плотной симметричной положительно-определённой матрицы.
2 Разложение Холецкого, блочный вещественный вариант для плотной симметричной положительно-определённой матрицы
Можно также рассмотреть блочный вариант разложения Холецкого. Предположим, что [math]n=MN[/math], тогда исходную матрицу [math]A[/math] размера [math]n\times n[/math] можно представить как блочную матрицу размера [math]N\times N[/math] с блоками размера [math]M\times M[/math]. Все формулы, используемые для получения точечного разложения Холецкого, для блочной матрицы [math]А[/math] останутся практически без изменений. Вместо явного обращения диагональных блоков, эффективнее будет хранить их в факторизованном виде [math]D_{ii}=L_{ii}L^T_{ii}[/math], а вместо точечной операции деления использовать операции решения треугольных систем. Общее количество арифметических операций при этом останется практически неизменным, но зато существенно возрастет локальность вычислений. Размер блока [math]M[/math] выбирают таким образом, чтобы все блоки, участвующие в операции исключения, помещались в кэш первого или второго уровня. В этом случае подкачки данных в память будут минимальными.
Аналогичный прием понадобится также и для эффективной реализации параллельной версии разложения Холецкого, что позволит минимизировать как общее количество обменов, так и количество пересылаемой между процессорами информации. Полезным побочным эффектом использования блочной версии разложения Холецкого может стать повышение скалярной эффективности алгоритма за счет явного использования размера блока [math]M[/math] во внутренних циклах (прием "разворачивания цикла" или "loop unrolling").
3 Разложение Холецкого, точечный вещественный вариант для разреженной симметричной положительно-определённой матрицы
3.1 Основные отличия от случая плотной матрицы
3.2 Переупорядочивания для уменьшения количества новых ненулевых элементов
4 Разложение Холецкого, блочный вещественный вариант для разреженной симметричной положительно-определённой матрицы
(плотные блоки небольшого размера, равного количеству неизвестных функций на узел, или выбираемому искуственно)
5 Разложение Холецкого для эрмитовой матрицы
Эрмитовой (или комплексно-самосопряженной) матрицей называют такую квадратную комплексную матрицу [math]A[/math], для элементов которой выполняется соотношение [math]a_{ij}=\overline{a_{ji}}[/math] (здесь, если [math]z=a+{\rm i}b[/math] и [math]{\rm i}^2=-1[/math], то [math]\overline z=a-{\rm i}b[/math]). В матричном виде это можно записать как [math]A=\overline{A^T}[/math] или [math]A=A^Н[/math].
5.1 Точечный вариант
Как естественное обобщение разложения Холецкого для точечной симметричной положительно-определеной матрицы может быть рассмотрено разложение Холецкого для эрмитовой матрицы. Все формулы для вычисления разложения остаются прежними, только теперь вместо операций над вещественными числами выполняются аналогичные комплексные операции.
В отличие от вещественного варианта, для выполнении комплексных операций потребуется считывать из памяти вдвое больше данных и производить над ними примерно вчетверо больше арифметических операций, что должно не только несколько улучшыть локальность вычислений, но и повысить их эффективность.
5.2 Блочный вариант
Реализация блочного варианта разложения Холецкого для эрмитовых матриц будет аналогична рассмотрему выше блочному варианту для вещественных матриц.