Участник:Alexander34396/Обобщенный метод минимальных невязок: различия между версиями

Материал из Алговики
Перейти к навигации Перейти к поиску
Строка 18: Строка 18:
 
Метод GMRES приближает точное решение исходной системы <math> Ax = b </math> вектором <math> x_k \in K_k </math>, минимизирующим Евклидову норму невязки <math>r_k = Ax_k-b</math>.
 
Метод GMRES приближает точное решение исходной системы <math> Ax = b </math> вектором <math> x_k \in K_k </math>, минимизирующим Евклидову норму невязки <math>r_k = Ax_k-b</math>.
  
Для решения исходной системы GMRES, используя <math> l_2 </math>-ортонормальный базис пространства <math> K_k </math>, выполняет поиск приближённого решения <math> x_k </math> в виде:  
+
Для решения исходной системы GMRES, используя <math> l_2 </math>-ортонормированный базис пространства <math> K_k </math>, выполняет поиск приближённого решения <math> x_k </math> в виде:  
 
:<math> x_k = x_0 + z_k </math>,  
 
:<math> x_k = x_0 + z_k </math>,  
 
где <math> x_0 </math> - некоторое начальное приближение, <math> z_k \in K_k </math> - поправка решения.
 
где <math> x_0 </math> - некоторое начальное приближение, <math> z_k \in K_k </math> - поправка решения.
  
Для построения ортонормального базиса <math> K_k </math> метод использует ортогонализацию Арнольди. При введении для базиса <math> K_k </math> матричного обозначения <math> V_k </math> можно записать:  
+
Для построения ортонормированного базиса <math> K_k </math> метод использует ортогонализацию Арнольди. При введении для базиса <math> K_k </math> матричного обозначения <math> V_k </math> можно записать:  
 
:<math> z_k = V_ky_k </math>,  
 
:<math> z_k = V_ky_k </math>,  
 
где <math> y_k \in \mathbb{R}^k </math> - вектор коэффициентов.
 
где <math> y_k \in \mathbb{R}^k </math> - вектор коэффициентов.
Строка 28: Строка 28:
 
В общем виде k-aя итерация алгоритма GMRES может быть записан следующим образом:
 
В общем виде k-aя итерация алгоритма GMRES может быть записан следующим образом:
  
# найти ортонормальный базис <math> V_k </math> подпространства <math> K_k </math> с помощью ортогонализации Арнольди;
+
# найти ортонормированный базис <math> V_k </math> подпространства <math> K_k </math> с помощью ортогонализации Арнольди;
 
# найти <math> y_k </math>, минимизирующий <math> \|r_k\|_2 </math>;
 
# найти <math> y_k </math>, минимизирующий <math> \|r_k\|_2 </math>;
 
# вычислить <math> x_k = x_0 + V_ky_k </math>;
 
# вычислить <math> x_k = x_0 + V_ky_k </math>;
Строка 36: Строка 36:
  
 
Вычислительное ядро последовательной версии метода GMRES состоит из двух частей:
 
Вычислительное ядро последовательной версии метода GMRES состоит из двух частей:
* Вычисление ортонормального базиса <math> K_k </math>;
+
* Вычисление ортонормированного базиса <math> K_k </math>;
 
* Формирование приближенного решения <math> x_k </math>.
 
* Формирование приближенного решения <math> x_k </math>.
  
На каждой итерации для вычисления ортонормального базиса <math> K_k </math> метод использует процесс Арнольди:
+
На каждой итерации для вычисления ортонормированного базиса <math> K_k </math> метод использует процесс Арнольди:
 
: <math> \hat{v}_{k+1} := Av_k - \sum_{i=1}^k h_{ik}v_{k} </math>, где <math> h_{ik} := (Av_k, v_i) </math>.
 
: <math> \hat{v}_{k+1} := Av_k - \sum_{i=1}^k h_{ik}v_{k} </math>, где <math> h_{ik} := (Av_k, v_i) </math>.
 
Этот процесс требует <math> k(k + 1) n + kNZ  </math> мультипликативных операций, где NZ - количество ненулевых элементов матрицы <math> A </math>.
 
Этот процесс требует <math> k(k + 1) n + kNZ  </math> мультипликативных операций, где NZ - количество ненулевых элементов матрицы <math> A </math>.
Строка 73: Строка 73:
 
# <math> v_{k+1} = \frac{\hat{v}_{k+1}}{h_{k+1k}} </math>;
 
# <math> v_{k+1} = \frac{\hat{v}_{k+1}}{h_{k+1k}} </math>;
 
# <math> x_k = x_0 + V_ky_k </math>, где <math>y_k</math> минимизирует <math>\|r_0 - AV_ky_k\|_2</math>.
 
# <math> x_k = x_0 + V_ky_k </math>, где <math>y_k</math> минимизирует <math>\|r_0 - AV_ky_k\|_2</math>.
 +
 +
=== Последовательная сложность алгоритма ===
  
 
== Литература ==
 
== Литература ==
 
<references \>
 
<references \>

Версия 23:56, 15 октября 2016

1 Свойства и структура алгоритма

1.1 Общее описание алгоритма

Обобщённый метод минимальных невязок (англ. Generalized minimal residual method, GMRES) - итерационный метод численного решения системы линейных алгебраических уравнений с невырожденной матрицей. Метод основан на минимизации квадратичного функционала невязки на подпространствах Крылова. Разработан Юсефом Саадом и Мартином Шульцем[1] в 1986 году как обобщение метода MINRES[2] на случай систем с несимметричными матрицами.

1.2 Математическое описание алгоритма

Исходные данные:

  • система линейных алгебраических уравнений вида [math] Ax = b [/math], где [math] A [/math] — невырожденная матрица размера [math]n[/math]-на-[math] n [/math];
  • [math] x_0 [/math] - некоторое начальное приближение.

Вычисляемые данные:

  • [math] x_k [/math] - приближённое решение исходной системы.

Подпространство Крылова размерности [math] k, k \leq n [/math] для решения исходной системы:

[math] K_k = K_k(A,b) = \operatorname{span} \, \{ b, Ab, A^2b, \ldots, A^{k-1}b \}. \, [/math]

Метод GMRES приближает точное решение исходной системы [math] Ax = b [/math] вектором [math] x_k \in K_k [/math], минимизирующим Евклидову норму невязки [math]r_k = Ax_k-b[/math].

Для решения исходной системы GMRES, используя [math] l_2 [/math]-ортонормированный базис пространства [math] K_k [/math], выполняет поиск приближённого решения [math] x_k [/math] в виде:

[math] x_k = x_0 + z_k [/math],

где [math] x_0 [/math] - некоторое начальное приближение, [math] z_k \in K_k [/math] - поправка решения.

Для построения ортонормированного базиса [math] K_k [/math] метод использует ортогонализацию Арнольди. При введении для базиса [math] K_k [/math] матричного обозначения [math] V_k [/math] можно записать:

[math] z_k = V_ky_k [/math],

где [math] y_k \in \mathbb{R}^k [/math] - вектор коэффициентов.

В общем виде k-aя итерация алгоритма GMRES может быть записан следующим образом:

  1. найти ортонормированный базис [math] V_k [/math] подпространства [math] K_k [/math] с помощью ортогонализации Арнольди;
  2. найти [math] y_k [/math], минимизирующий [math] \|r_k\|_2 [/math];
  3. вычислить [math] x_k = x_0 + V_ky_k [/math];
  4. вычислить [math] r_k [/math] и остановиться,если требуемая точность была достигнута, иначе повторить для k + 1.

1.3 Вычислительное ядро алгоритма

Вычислительное ядро последовательной версии метода GMRES состоит из двух частей:

  • Вычисление ортонормированного базиса [math] K_k [/math];
  • Формирование приближенного решения [math] x_k [/math].

На каждой итерации для вычисления ортонормированного базиса [math] K_k [/math] метод использует процесс Арнольди:

[math] \hat{v}_{k+1} := Av_k - \sum_{i=1}^k h_{ik}v_{k} [/math], где [math] h_{ik} := (Av_k, v_i) [/math].

Этот процесс требует [math] k(k + 1) n + kNZ [/math] мультипликативных операций, где NZ - количество ненулевых элементов матрицы [math] A [/math].

Для нахождения на каждой итерации приближённого решения метод использует формулу:

[math] x_k = x_0 + V_ky_k [/math].

Вычисление этой формулы требует [math]nk[/math] мультипликативных операций.

1.4 Макроструктура алгоритма

В алгоритме можно выделить следующие макрооперации:

  • Умножение матрицы на вектор;
  • Вычисление скалярного произведения векторов;
  • Вычисление Евклидовой нормы вектора;
  • Умножение вектора на скаляр;
  • Деление вектора на скаляр;
  • Задача минимизации функционала [math] \|r_0 - AV_ky_k\|_2 [/math].

1.5 Схема реализации последовательного алгоритма

Для решения исходной системы методом GMRES можно воспользоваться следующим алгоритмом:

Подготовка перед итерационным процессом:

  1. Выбрать начальное приближение [math] x_0 [/math];
  2. Посчитать невязку [math] r_0 = b - Ax_0 [/math];
  3. Вычислить [math] v_1 = \frac{r_0}{\|r_0\|_2} [/math].

k-ая итерация:

  1. [math] h_{ik} := (Av_k, v_i), \quad i=1,\ldots,k [/math];
  2. [math] \hat{v}_{k+1} := Av_k - \sum_{i=1}^k h_{ik}v_{i} [/math];
  3. [math] h_{k+1k} = \|\hat{v}_{k+1}\|_2 [/math];
  4. [math] v_{k+1} = \frac{\hat{v}_{k+1}}{h_{k+1k}} [/math];
  5. [math] x_k = x_0 + V_ky_k [/math], где [math]y_k[/math] минимизирует [math]\|r_0 - AV_ky_k\|_2[/math].

1.6 Последовательная сложность алгоритма

2 Литература

<references \>

  1. Y.Saad, M.H. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Scientific and Stat. Comp. 7: 856-869 (1986)
  2. C. C. Paige and M. A. Saunders. Solution of sparse indefinite systems of linear equations, SIAM J. Numerical Analysis 12, 617-629 (1975)