Участник:Alexander34396/Обобщенный метод минимальных невязок: различия между версиями
Строка 4: | Строка 4: | ||
=== Общее описание алгоритма === | === Общее описание алгоритма === | ||
− | '''Обобщённый метод минимальных невязок''' ({{lang-en|Generalized minimal residual method, GMRES}}) - итерационный метод численного решения системы линейных алгебраических уравнений с невырожденной матрицей. Метод основан на | + | '''Обобщённый метод минимальных невязок''' ({{lang-en|Generalized minimal residual method, GMRES}}) - итерационный метод численного решения системы линейных алгебраических уравнений с невырожденной матрицей. Метод основан на минимизации квадратичного функционала невязки на подпространствах Крылова. Разработан Юсефом Саадом и Мартином Шульцем<ref> Y.Saad, M.H. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Scientific and Stat. Comp. 7: 856-869 (1986) </ref> в 1986 году как обобщение метода MINRES<ref>C. C. Paige and M. A. Saunders. Solution of sparse indefinite systems of linear equations, SIAM J. Numerical Analysis 12, 617-629 (1975)</ref> на случай систем с несимметричными матрицами. |
=== Математическое описание алгоритма === | === Математическое описание алгоритма === |
Версия 15:54, 17 октября 2016
Эта работа ждет рассмотрения преподавателем Дата последней правки страницы: 17.10.2016 Авторы этой статьи считают, что задание выполнено. |
Содержание
1 Свойства и структура алгоритма
1.1 Общее описание алгоритма
Обобщённый метод минимальных невязок (англ. Generalized minimal residual method, GMRES) - итерационный метод численного решения системы линейных алгебраических уравнений с невырожденной матрицей. Метод основан на минимизации квадратичного функционала невязки на подпространствах Крылова. Разработан Юсефом Саадом и Мартином Шульцем[1] в 1986 году как обобщение метода MINRES[2] на случай систем с несимметричными матрицами.
1.2 Математическое описание алгоритма
Исходные данные:
- система линейных алгебраических уравнений вида [math] Ax = b [/math], где [math] A [/math] — невырожденная матрица размера [math]n[/math]-на-[math] n [/math];
- [math] x_0 [/math] - начальное приближение.
Вычисляемые данные:
- [math] x_k [/math] - приближённое решение исходной системы.
Метод GMRES приближает точное решение исходной системы [math] Ax = b [/math] вектором [math] x_k [/math], который минимализирует [math] l_2 [/math]-норму невязки [math] r_k = Ax_k - b[/math] на подпространстве Крылова:
- [math] K_k = K_k(A,b) = \operatorname{span} \, \{ b, Ab, A^2b, \ldots, A^{k-1}b \} [/math].
На каждой итерации метода решение уточняется поправкой, представленной в виде разложения по [math] l_2 [/math]-ортонормированному базису пространства [math] K_k [/math]:
- [math] x_k = x_0 + z_k [/math], где [math] x_0 [/math] - некоторое начальное приближение, [math] z_k \in K_k [/math] - поправка решения.
1.2.1 Ортогонализация Арнольди
Для построения ортонормированного базиса [math] K_k [/math] метод использует процесс Арнольди.
- Входные данные
- [math] v_1 [/math], такой что [math] \|v_1\|_2 = 1 [/math];
- матрица A размером [math] n [/math]-на-[math] n [/math].
- Формула процесса
- [math] h_{j+1j}v_{j+1} = Av_j - \sum_{i=1}^j h_{ij}v_{j} [/math], где [math] h_{ij} = (Av_j, v_i)[/math], [math] \quad j=1,\ldots,k [/math].
- Алгоритм процесса
Выполнять для [math] \quad j=1,\ldots,k [/math]:
- [math] h_{ij} = (Av_j, v_i), \quad i=1,\ldots,j [/math];
- [math] \hat{v}_{j+1} = Av_j - \sum_{i=1}^j h_{ij}v_{i} [/math];
- [math] h_{j+1j} = \|\hat{v}_{j+1}\|_2 [/math];
- [math] v_{j+1} = \frac{\hat{v}_{j+1}}{h_{j+1j}} [/math].
- При введении матричных обозначений можно записать
- [math] z_k = V_ky_k [/math], где [math] y_k \in \mathbb{R}^k [/math] - вектор коэффициентов;
- [math] AV_k = V_kH_k + h_{k+1k}v_{k+1} e_k^T = V_{k+1}\overline{H}_k [/math], где [math] V_k = [v_1|v_2|...|v_k] [/math], а [math] \overline{H}_k [/math] - верхняя матрица Хессенберга размерности [math] (j+1) [/math] на [math] j [/math].
1.2.2 Минимизация функционала невязки
Для решения исходной системы GMRES вычисляет приближённое решение [math] x_k [/math], которое минимизизует функционал невязки:
- [math] J(y) = \|b- A x_k\|_2 = \|b - A(x_0 + V_ky)\|_2 = \|\beta e_1 - \overline{H}_ky_k \|_2 [/math], где [math] \beta = \|r_0\|_2 [/math].
Вектор [math] y_k [/math] может найден как решение линейной задачи наименьших квадратов размера [math] k+1 [/math]-на-[math] k [/math]:
- [math] y_k = \arg\min_{y}\| \beta e_1 - \overline{H}_ky\|_2 [/math].
Для решения задачи минимизации приведем матрицу [math] \overline{H}_k [/math] к верхнему треугольному виду с помощью вращений Гивенса.
1.2.3 Общая схема метода
В общем виде k-aя итерация алгоритма GMRES может быть записан следующим образом:
- найти ортонормированный базис [math] V_k [/math] подпространства [math] K_k [/math] с помощью ортогонализации Арнольди;
- найти [math] y_k [/math], минимизирующий [math] \|r_k\|_2 [/math];
- вычислить [math] x_k = x_0 + V_ky_k [/math];
- вычислить [math] r_k [/math] и остановиться,если требуемая точность была достигнута, иначе повторить.
1.3 Вычислительное ядро алгоритма
Вычислительное ядро последовательной версии метода GMRES состоит из двух частей:
- Вычисление ортонормированного базиса [math] K_k [/math];
- Формирование приближенного решения [math] x_k [/math].
Для вычисления ортонормированного базиса [math] K_k [/math] метод использует процесс Арнольди:
- [math] h_{j+1j}v_{j+1} = Av_j - \sum_{i=1}^j h_{ij}v_{j} [/math], где [math] h_{ij} = (Av_j, v_i)[/math], [math] \quad j=1,\ldots,k [/math].
Для нахождения приближённого решения [math] x_k [/math] метод использует формулу:
- [math] x_k = x_0 + V_ky_k [/math].
1.4 Макроструктура алгоритма
В алгоритме можно выделить следующие макрооперации:
- Умножение матрицы на вектор;
- Вычисление скалярного произведения векторов;
- Вычисление Евклидовой нормы вектора;
- Умножение вектора на скаляр;
- Деление вектора на скаляр.
1.5 Схема реализации последовательного алгоритма
Для решения исходной системы методом GMRES можно воспользоваться следующим алгоритмом:
Подготовка перед итерационным процессом:
- Выбрать начальное приближение [math] x_0 [/math];
- Посчитать невязку [math] r_0 = b - Ax_0 [/math];
- Вычислить [math] v_1 = \frac{r_0}{\|r_0\|_2} [/math].
k-ая итерация:
- [math] h_{ik} = (Av_k, v_i), \quad i=1,\ldots,k [/math];
- [math] \hat{v}_{k+1} = Av_k - \sum_{i=1}^k h_{ik}v_{i} [/math];
- [math] h_{k+1k} = \|\hat{v}_{k+1}\|_2 [/math];
- [math] v_{k+1} = \frac{\hat{v}_{k+1}}{h_{k+1k}} [/math];
- [math] x_k = x_0 + V_ky_k [/math], где [math]y_k[/math] минимизирует [math]\|r_0 - AV_ky_k\|_2[/math].
1.6 Последовательная сложность алгоритма
Если пренебречь сложностью вычисления [math] y_k [/math], то общую сложность алгоритма GMRES можно разделить на две части:
- 1. Сложность вычисления ортонормированного базиса пространства [math] K_k [/math]
- a) Для вычисления [math] j [/math]-го вектора базиса [math] K_k, j \lt k[/math] требуется:
- [math] NZ + (2j + 1)n [/math] мультипликативных операций, где [math] NZ [/math] - количество ненулевых элементов матрицы [math] A [/math].
- b) Вычисление последнего вектора базиса требует:
- [math] n(k + 1) [/math] мультипликативных операций.
- c) Общая мультипликативная сложность вычисления ортонормированного базиса [math] K_k [/math]:
- [math] nk(k + 1) + kNZ [/math].
- 2. Сложность вычисления приближённого решения [math] x_k [/math]
- Вычисление этой формулы требует [math]nk[/math] мультипликативных операций.
1.7 Информационный граф
2 Литература
<references \>
- ↑ Y.Saad, M.H. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Scientific and Stat. Comp. 7: 856-869 (1986)
- ↑ C. C. Paige and M. A. Saunders. Solution of sparse indefinite systems of linear equations, SIAM J. Numerical Analysis 12, 617-629 (1975)