Участник:Маркова Екатерина/Построение матрицы Адамара: различия между версиями

Материал из Алговики
Перейти к навигации Перейти к поиску
Строка 20: Строка 20:
 
=== Вычислительное ядро алгоритма ===
 
=== Вычислительное ядро алгоритма ===
  
Вычислительное ядро рекурсивного алгоритма состоит из  <math>\;N^2\;</math>  присвоений значений.
+
Вычислительное ядро рекурсивного алгоритма состоит из  <math>\;N^2\;</math>  присвоений значений матрицы Адамара.
  
 
=== Макроструктура алгоритма ===
 
=== Макроструктура алгоритма ===

Версия 16:11, 28 октября 2016

Основной автор статьи: Маркова Е.А. 615 гр.

1 Свойства и структура алгоритма

1.1 Общее описание алгоритма

Матрица Адамара H - это квадратная матрица размера N\times N, составленная из чисел 1 и -1, столбцы которой ортогональны, так что справедливо соотношение:

H*H^T = N*E_N,

где E_n - это единичная матрица размера n. Матрицы Адамара применяются в различных областях, включая комбинаторику, численный анализ, обработку сигналов.

1.2 Математическое описание алгоритма

Пусть H_N - матрица Адамара порядка N и -H_N - матрица с противоположными элементами. Тогда матрица H_{2N} получается следующим образом: H_{2N} = \begin{bmatrix} H_N & H_N \\ H_N & -H_N \end{bmatrix}

1.3 Вычислительное ядро алгоритма

Вычислительное ядро рекурсивного алгоритма состоит из \;N^2\; присвоений значений матрицы Адамара.

1.4 Макроструктура алгоритма

Алгоритм не использует в качестве составных частей другие алгоритмы. Как это было описано в вычислительном ядре, в пустые блоки дублируются со сменой или без смены знака значения первого блока матрицы.

1.5 Схема реализации последовательного алгоритма

В описанном виде алгоритм представляет из себя примитивное дублирование элементов матрицы, полученной на предыдущем этапе, в пустующие блоки новой матрицы.

Сначала заполняется правый верхний блок матрицы H

H_{ij} = H_{i(j - \frac{N}{2})}, где i = 1..\frac{N}{2}, j = \frac{N}{2}+1..N;

затем левый нижний блок

H_{ij} = H_{(i-\frac{N}{2})j}, где i = \frac{N}{2}+1..N, j = 1.. \frac{N}{2}.

Последним заполняется нижний правый блок матрицы

H_{ij} = H_{(i-\frac{N}{2})(j-\frac{N}{2})}, где i = \frac{N}{2}+1..N , j = \frac{N}{2}+1..N.


1.6 Последовательная сложность алгоритма

Для заполнения матрицы H размера N\times N необходимо \;N^2\; присвоений значений. Из чего можно сделать вывод, что рекурсивный метод построения матрицы Адамара является алгоритмом с квадратичной сложностью.

1.7 Информационный граф

Зависимость данных для матрицы размерностью 4*4 можно увидеть на рис.1.

Some text

1.8 Ресурс параллелизма алгоритма

Логически алгоритм можно разделить на три части, которые на каждом шаге выполняются независимо. Внутри каждой части происходит 2^{2N}-2^{2(N-1)} независимых присвоений, где N - номер шага алгоритма, причем размерность матрицы на шаге N равна 2^N. При этом необходимо ждать завершения предыдущего шага, то есть необходимы синхронизирующие блокировки.

1.9 Входные и выходные данные алгоритма

Входные данные: N - размерность матрицы.

Выходные данные: матрица размером N\times N.

Объем выходных данных: N^2.

1.10 Свойства алгоритма

Алгоритм полностью детерминирован.

2 Программная реализация алгоритма

2.1 Особенности реализации последовательного алгоритма

2.2 Локальность данных и вычислений

2.3 Возможные способы и особенности параллельной реализации алгоритма

2.4 Масштабируемость алгоритма и его реализации

2.5 Динамические характеристики и эффективность реализации алгоритма

2.6 Выводы для классов архитектур

2.7 Существующие реализации алгоритма

Реализация MATLAB

Реализация PYTHON

Реализация WOLFRAM

На языке Java реализован класс Hadamard не входящий в стандарт языка. С кодом можно ознакомиться по ссылке.

3 Литература

1. Мак-Вильямс Ф., Слоэн Н. — "Теория кодов, исправляющих ошибки" (1979)

2. Кронберг, Ю.И. Ожигов, А.Ю. Чернявский — "Алгебраический аппарат квантовой информатики 2"

3. М. Н. Аршинов, Л. Е. Садовский — "Коды и математика" (1983)