Участник:D.Polykovskiy/Алгоритм Бойера-Ватсона: различия между версиями

Материал из Алговики
Перейти к навигации Перейти к поиску
Строка 75: Строка 75:
 
<syntaxhighlight lang="javascript">
 
<syntaxhighlight lang="javascript">
 
   function BowyerWatson (pointList)
 
   function BowyerWatson (pointList)
       // pointList is a set of coordinates defining the points to be triangulated
+
       // pointList - множество точек для триангуляции
       triangulation := empty triangle mesh data structure
+
       triangulation := пустое множество треугольников
       add super-triangle to triangulation // must be large enough to completely contain all the points in pointList
+
       Добавляем super-triangle в триангуляцию
       for each point in pointList do // add all the points one at a time to the triangulation
+
       for each point in pointList do // последовательно добавляем точки
 
         badTriangles := empty set
 
         badTriangles := empty set
         for each triangle in triangulation do // first find all the triangles that are no longer valid due to the insertion
+
         for each triangle in triangulation do // находим поврежденные треугольники
 
             if point is inside circumcircle of triangle
 
             if point is inside circumcircle of triangle
 
               add triangle to badTriangles
 
               add triangle to badTriangles
 
         polygon := empty set
 
         polygon := empty set
         for each triangle in badTriangles do // find the boundary of the polygonal hole
+
         for each triangle in badTriangles do // находим границу дырки
 
             for each edge in triangle do
 
             for each edge in triangle do
 
               if edge is not shared by any other triangles in badTriangles
 
               if edge is not shared by any other triangles in badTriangles
 
                   add edge to polygon
 
                   add edge to polygon
         for each triangle in badTriangles do // remove them from the data structure
+
         for each triangle in badTriangles do // удаляем поврежденные треугольники
 
             remove triangle from triangulation
 
             remove triangle from triangulation
         for each edge in polygon do // re-triangulate the polygonal hole
+
         for each edge in polygon do // заполняем дырку
 
             newTri := form a triangle from edge to point
 
             newTri := form a triangle from edge to point
 
             add newTri to triangulation
 
             add newTri to triangulation
       for each triangle in triangulation // done inserting points, now clean up
+
       for each triangle in triangulation // убираем вершины super-triangle
 
         if triangle contains a vertex from original super-triangle
 
         if triangle contains a vertex from original super-triangle
 
             remove triangle from triangulation
 
             remove triangle from triangulation
 
       return triangulation  
 
       return triangulation  
 
</syntaxhighlight>
 
</syntaxhighlight>
 
 
After every insertion, any triangles whose circumcircles contain the new point are deleted, leaving a [[star-shaped polygon]]al hole which is then re-triangulated using the new point. By using the connectivity of the triangulation to efficiently locate triangles to remove, the algorithm can take ''O(N log N)'' operations to triangulate N points, although special degenerate cases exist where this goes up to ''O(N<sup>2</sup>)''.<ref>Rebay, S. ''Efficient Unstructured Mesh Generation by Means of Delaunay Triangulation and Bowyer-Watson Algorithm''. Journal of Computational Physics Volume 106 Issue 1, May 1993, p. 127.</ref>
 
 
The algorithm is sometimes known just as the '''Bowyer Algorithm''' or the '''Watson Algorithm'''.  [[Adrian Bowyer]] and David Watson devised it independently of each other at the same time, and each published a paper on it in the same issue of ''[[The Computer Journal]]'' (see below).
 
 
<gallery>
 
File:Bowyer-Watson 0.png|First step: insert a node in an enclosing "super"-triangle
 
File:Bowyer-Watson 1.png|Insert second node
 
File:Bowyer-Watson 2.png|Insert third node
 
File:Bowyer-Watson 3.png|Insert fourth node
 
File:Bowyer-Watson 4.png|Insert fifth (and last) node
 
File:Bowyer-Watson 6.png|Remove super-triangle edges
 
</gallery>
 
  
 
==Pseudocode==
 
==Pseudocode==

Версия 01:28, 13 ноября 2016

Алгоритм Бойера–Ватсона --- метод, позволяющий построить триангуляцию Делоне конечного множества точек в пространстве любой размерности. Как следствие, алгоритм позволяет получить диаграму Вороного.

1 Свойства и структура алгоритма

1.1 Общее описание алгоритма

Алгоритм Бойера–Ватсона позволяет построить триангуляцию Деолне конечного множества точек в пространстве любой размерности. Он относится к семейству инкрементальных, т.е. проводит построение путем поочередного добавления точек, получая при этом на каждом шаге корректную триангуляцию Делоне текущего подмножества точек.

1.2 Математическое описание алгоритма

Триангуля́ция Делоне́ — триангуляция заданного множества точек S на плоскости (или в пространстве большей размерности), при которой для любого треугольника все точки из S за исключением точек, являющихся его вершинами, лежат вне окружности, описанной вокруг треугольника. На многомерный случай алгоритм обобщается путем замены треугольников на многомерные симплексы.

Итерации алгоритма строятся следующим образом: На нулевой итерации строится треугольник (super-triangle), покрывающий все точки множества (таким образом множество S пополняется тремя вспомогательными точками). Начальное множество треугольников состоит только из этого треугольника. Далее итеративно выполняются следующие действия:

  1. Добавляется новая точка
  2. Из множества треугольников выкидываются все треугольники, в описанную окружность в которых попадает новая точка. Таким образом в триангуляции образуется дырка в форме многоугольника.
  3. Эта дырка заполняется треугольниками, содержащими новую точку в качестве одной вершины и ребрами дырки в качестве противолежащей стороны.

Доказано, что после завершения каждой итерации будет получена корректная триангуляция Делоне.

На последнем шаге алгоритма выкидываются треугольники, содержащие в качестве вершины вспомогательную.

1.3 Вычислительное ядро алгоритма

Большая часть времени работы алгоритма приходится на поиск поврежденных треугольников. В простейшей реализации это делается за O(|S|), однако эта сложность может быть в среднем уменьшена до O(log|S|) при структурировании пространства (нпр., KD-деревом). Тем не менее в худшем случае поиск все равно будет требовать O(|S|) действий.

В среднем число поврежденных треугольников оказывается малым, поэтому все действия кроме поиска выполняются в среднем за O(1).

Учитывая итерации по объектам, в худшем случае вне зависимости от использования структурирования пространства получается сложность O(|S|2). Однако средняя оценка при структурировании снижается до O(|S| log|S|).

1.4 Макроструктура алгоритма

1.4.1 Проверка на вхождение в описанную окружность

Для работы алгоритма требуется уметь проверять точку D на принадлежность описанной окружности треугольника ABC. Для двумерного случая это может быть сделано при помощи перехода в 3D пространство по схеме (x, y) -> (x, y, x2+y2)[1]. В новом пространстве точке расположены на параболоиде. Утверждается, что четыре точки коцикличны в (x, y) тогда и только тогда, когда они компланарны в пространстве (x, y, x2+y2). Пользуясь выпуклостью парабалоида, можно сформулировать критерий принадлежности точки описанной окружности: достаточно проверить неотрицательность определителя матрицы (предполагается, что точки расположены против часовой стрелки)

[math]\begin{vmatrix} A_x & A_y & A_x^2 + A_y^2 & 1\\ B_x & B_y & B_x^2 + B_y^2 & 1\\ C_x & C_y & C_x^2 + C_y^2 & 1\\ D_x & D_y & D_x^2 + D_y^2 & 1 \end{vmatrix} = \begin{vmatrix} A_x - D_x & A_y - D_y & (A_x^2 - D_x^2) + (A_y^2 - D_y^2) \\ B_x - D_x & B_y - D_y & (B_x^2 - D_x^2) + (B_y^2 - D_y^2) \\ C_x - D_x & C_y - D_y & (C_x^2 - D_x^2) + (C_y^2 - D_y^2) \end{vmatrix} \gt 0 [/math]

1.4.2 Построение super-triangle

Построить super-triangle можно множеством способов. Например, можно найти разброс (max-min) значений координат точек вдоль каждой из осей. Затем можно вычислить максимальное среди этих значений, обозначив его за w. После этого можно взять центр масс точек S и отступить от него вверх на 2w (точка A), вниз на 2w и влево на 2w (точка B) и, наконец, вниз на 2w и вправо на 2w (точка C). Треугольник ABC будет заведомо содержать все точки из S.

1.5 Схема реализации последовательного алгоритма

   function BowyerWatson (pointList)
      // pointList - множество точек для триангуляции
      triangulation := пустое множество треугольников
      Добавляем super-triangle в триангуляцию
      for each point in pointList do // последовательно добавляем точки
         badTriangles := empty set
         for each triangle in triangulation do // находим поврежденные треугольники
            if point is inside circumcircle of triangle
               add triangle to badTriangles
         polygon := empty set
         for each triangle in badTriangles do // находим границу дырки
            for each edge in triangle do
               if edge is not shared by any other triangles in badTriangles
                  add edge to polygon
         for each triangle in badTriangles do // удаляем поврежденные треугольники
            remove triangle from triangulation
         for each edge in polygon do // заполняем дырку
            newTri := form a triangle from edge to point
            add newTri to triangulation
      for each triangle in triangulation // убираем вершины super-triangle
         if triangle contains a vertex from original super-triangle
            remove triangle from triangulation
      return triangulation

1.6 Pseudocode

The following pseudocode describes a basic implementation of the Bowyer-Watson algorithm. Efficiency can be improved in a number of ways. For example, the triangle connectivity can be used to locate the triangles which contain the new point in their circumcircle, without having to check all of the triangles. Pre-computing the circumcircles can save time at the expense of additional memory usage. And if the points are uniformly distributed, sorting them along a space filling Hilbert curve prior to insertion can also speed point location.[2]

   function BowyerWatson (pointList)
      // pointList is a set of coordinates defining the points to be triangulated
      triangulation := empty triangle mesh data structure
      add super-triangle to triangulation // must be large enough to completely contain all the points in pointList
      for each point in pointList do // add all the points one at a time to the triangulation
         badTriangles := empty set
         for each triangle in triangulation do // first find all the triangles that are no longer valid due to the insertion
            if point is inside circumcircle of triangle
               add triangle to badTriangles
         polygon := empty set
         for each triangle in badTriangles do // find the boundary of the polygonal hole
            for each edge in triangle do
               if edge is not shared by any other triangles in badTriangles
                  add edge to polygon
         for each triangle in badTriangles do // remove them from the data structure
            remove triangle from triangulation
         for each edge in polygon do // re-triangulate the polygonal hole
            newTri := form a triangle from edge to point
            add newTri to triangulation
      for each triangle in triangulation // done inserting points, now clean up
         if triangle contains a vertex from original super-triangle
            remove triangle from triangulation
      return triangulation

1.7 See also

1.8 References

Шаблон:Reflist

  • Шаблон:Cite journal
  • Liu, Yuanxin, and Jack Snoeyink. "A comparison of five implementations of 3D Delaunay tessellation." Combinatorial and Computational Geometry 52 (2005): 439-458.