Участник:Vlamakarenko/Трассировка лучей: различия между версиями

Материал из Алговики
Перейти к навигации Перейти к поиску
Строка 159: Строка 159:
  
 
     return getBackgroundColor(ray); //вернули цвет фона
 
     return getBackgroundColor(ray); //вернули цвет фона
 +
</source>
 +
 +
<source lang="c++">
 +
//shade(is)
 +
 +
//цвета
 +
direct_illumination = {0,0,0};
 +
indirect_illumintaion = {0,0,0};
 +
 +
for (uint i = 0; i < light_count; i++)
 +
{
 +
    if (light[i].isVisible(is)) //если источник света виден из точки пересечения
 +
    {
 +
        direct_illumination = getIllumination(light[i], is); //рассчитываем прямое излучение от i-го источника света
 +
    }
 +
}
 +
 +
 +
if (isReflective(is.object))
 +
{
 +
      indirect_illumination = traceRay(reflecedRay(is.ray), is.depth + 1);
 +
}
 +
 +
//зная входящее излучение, расчитываем выходящее в зависимости от свойств материала объекта
 +
//...
 
</source>
 
</source>
  

Версия 21:35, 17 ноября 2016

авторы: В.А.Макаренко, Р.А.Габдуллин

Содержание

1 Свойства и структура алгоритма

1.1 Общее описание алгоритма

Трассировка лучей - это технология визуализации трехмерных сцен путем отслеживания обратной траектории лучей света (от наблюдателя к источнику). Достоинствами данного метода являются реалистичность итоговых изображений, возможность визуализации гладких объектов без аппроксимации полигональными поверхностями, простота реализации отражений, преломлений, взятия в фокус, реалистичного освещения; возможность параллельной обработки лучей.

1.2 Математическое описание алгоритма

1.2.1 Входные данные

[math]scene = \{objects, lights, camera\}[/math] - сцена, которая будет визуализирована алгоритмом, где

[math]objects[/math] - множество объектов (например сфера, плоскость, треугольник, составной объект и т. п.).

[math]lights[/math] - множество источников света (точечные источники, направленные источники, светящиеся объекты)

[math]camera[/math] - камера наблюдения ("виртуальный глаз").

Объекты задаются произвольным образом так, чтобы можно было найти пересечение луча с этим объектом (например, для сферы достаточно задать положение в пространстве и радиус, а для плоскости - точку, принадлежащую ей и нормаль). Также, для каждого объекта необходимо задать материал - информацию о его отражающих, преломляющих, поглощающих свойствах.

Источники света задаются по-разному, в зависимости от способа распространения света от источника. Например, точечные источники света задаются положением в пространстве и интенсивностью, направленные - интенсивностью и вектором направления.

Камера задается положением в пространстве и ортонормированным базисом [math](\overline{u}_c, \overline{v}_c, \overline{w}_c)[/math] (локальная система координат). [math]\overline{u}_c[/math] направлен вправо относительно наблюдателя, [math]\overline{v}_c[/math] - вверх, [math]\overline{w}_c[/math] - на наблюдателя. Таким образом, [math](\overline{u}_c, \overline{v}_c, \overline{w}_c)[/math] - правая тройка векторов. Вектор направления камеры в своей системе координат: [math](0, 0, -1)[/math].

1.2.2 Генерация луча

Перед камерой на расстоянии [math]d[/math] поставим пиксельную сетку [math]w \times h[/math] с размером пикселя [math]s \times s[/math] так, чтобы камера была направлена в центр сетки. Итоговое изображение будет получено из этой сетки покраской пикселей в нужный цвет.

Пусть [math]p(i, j)[/math], где [math]i=\overline{0,h-1}, \quad j=\overline{0,w-1}[/math] - пиксел [math]i[/math]-ой строки снизу [math]j[/math]-го столбца слева. Проведем луч из камеры к центру пикселя в локальной системе координат камеры. Начало луча в точке [math]\overline{pos}=(0,0,0)[/math]. Найдем вектор направления [math]\overline{dir}[/math]:

[math]\overline{dir}.x = s (j -\frac{w}{2} + \frac{1}{2}) [/math]

[math]\overline{dir}.y = s (i -\frac{h}{2} + \frac{1}{2}) [/math]

[math]\overline{dir}.z = d[/math]

Нормируем вектор [math]\overline{dir}[/math] и переведем луч в глобальную систему координат.

1.2.3 Пересечение луча с объектами сцены

Все точки луча [math]ray(\overline{p}, \overline{d})[/math] можно представить в виде:

[math]h(x,y,z)=\overline{p}+t \cdot \overline{d}, \quad t \in [0;\infty) [/math].

Луч пересекает объект [math]O_i[/math] тогда и только тогда, когда [math]t_i = \inf\{t \gt 0 \, | \quad \overline{p}+t \cdot \overline{d} \in O_i\} \, \lt \infty[/math]

Если луч пересекает объект [math]O_i[/math], то [math]h_i(x,y,z) = \overline{p}+t_i \cdot \overline{d}[/math] - их первое пересечение, [math]t_i[/math] - расстояние от начала луча до точки пересечения.


1.2.4 Вычисление цвета в точке пересечения

Найдем [math]T = \{t_i\}[/math] - параметры пересечения с объектами (см. предыдущий пункт).

[math]t_{min} = \min \{t_i\}, \quad O_{min} = \{O_i | t_i = t_{min}\}[/math]

Если [math]t_{min} = \infty[/math], то луч не пересекает ни один объект и нужно покрасить соответствующий пиксел в черный цвет (цвет фона).

Если [math]t_{min} \lt \infty[/math], то нужно найти выходящее излучение (цвет) из точки пересечения в камеру. Выходящее излучение зависит от свойств материала объекта, прямого (излучение, исходящее от источников света) и непрямого (отраженный свет) излучений, входящих в точку пересечения; угла между нормалью к поверхности в точке пересечения и направлением луча.

1.2.5 Вычисление прямого излучения

[math]h_{min}(x,y,z) = \overline{p}+t_{min} \cdot \overline{d}[/math].

[math]L_{is} = \sum_i L(S_i, h_{min})[/math] - прямое входящее излучение.

[math]L(S_i, h_{min})[/math] - излучение источника света [math]S_i[/math], приходящее в точку [math]h_{min}[/math].

Суммирование ведется по [math]i[/math] таким, что [math]S_i[/math] "виден" из точки [math]h_{min}[/math], в противном случае какой-то объект загораживает источник света, и в точку [math]h_{min}[/math] будет падать тень от этого объекта.

1.2.6 Вычисление непрямого излучения

Рассмотрим упрощенную модель непрямого излучения. Пусть материал объекта [math]O_{min}[/math] обладает способностью отражать свет.

Тогда нужно найти излучение, приходящее со стороны отраженного луча:

[math]ray(\overline{h}_{min}, \overline{w}_i)[/math] - отраженный луч.

[math]\overline{w}_i = \overline{d} -2\cdot (\overline{n}, \overline{d})\cdot \overline{n}[/math].

[math]L\{ray(\overline{h}_{min}, \overline{w}_i)\}[/math] - излучение приходящее со стороны отраженного луча. Оно находится тем же самым алгоритмом, что и цвет пикселя (то есть рекурсивно).

1.2.7 Улучшение визуальных качеств изображения

Чтобы сгладить изображение и избавиться от шума, обычно через пиксел проводят не один луч, а достаточно много лучей, для каждого считают цвет, а потом усредняют по всем лучам (берут среднее арифметическое).

1.3 Вычислительное ядро алгоритма

Основные вычисления связаны с:

1) поиском пересечения луча с объектами сцены.

2) расчетом излучения от каждого источника света (требуется определить, "виден" ли источник света из точки пересечения с объектом).

1.4 Макроструктура алгоритма

Для каждого пикселя изображения генерируется пучок лучей, проходящих через этот пиксел. Для каждого луча находится первое пересечение с объектами сцены, расчитывается прямое и непрямое входящие излучения и итоговое выходящее. После этого цвет усредняется по всем лучам данного пикселя.

1.5 Схема реализации последовательного алгоритма

Здесь приведен псевдокод ключевых моментов алгоритма.

//Покраска пикселей изображения

    for (uint r = 0; r < h; r++) //строки
    {
        for (uint c = 0; c < w; c++) //столбцы
        {
            image(r,c) = renderPixel(r, c); //вычисляем цвет в пикселе
        }
    }
    //renderPixel(r, c)

    pixel_color = {0,0,0};

    for (uint j = 0; j < num_rays_per_pixel; j++)
    {
        pp = generatePoint(); //генерируем произвольное смещение внутри пикеля

        //вычисляем координаты точки на полотне
        x = s * (c - 0.5 * w + pp.x);
        y = s * (r - 0.5 * h + pp.y);

        //cоздаем луч
        Ray ray({0,0,0}, normalize({x,y,-d}));
        Ray worldRay = convertToWorldCoords(ray);
        
        pixel_color += traceRay(worldRay, 0) * 1.0 / num_rays_per_pixel; //вычисляем цвет для каждого луча и усредняем
    }
    //traceRay(ray, depth)

    if (depth > max_depth) //превысили максимальную глубину луча, дальше не идем
    {
        return black; //возвращаем черный цвет
    }

    Intersection is = hitObjects(ray); //нашли первое пересечение с объектами сцены и записали информацию о нем в is:
                                       //материал объекта, расстояние, нормаль и т. п.

    if (is) //если есть пересечение
    {
        is.ray = ray; //запомнили луч
        is.depth = depth; // и глубину

        return shade(is); //расчитали цвет в точке пересечения в зависимости
                          //от материала объекта, используя информацию о пересечении
                                        
    }

    return getBackgroundColor(ray); //вернули цвет фона
//shade(is)

//цвета
direct_illumination = {0,0,0};
indirect_illumintaion = {0,0,0};

for (uint i = 0; i < light_count; i++)
{
    if (light[i].isVisible(is)) //если источник света виден из точки пересечения
    {
         direct_illumination = getIllumination(light[i], is); //рассчитываем прямое излучение от i-го источника света
    }
}


if (isReflective(is.object))
{
      indirect_illumination = traceRay(reflecedRay(is.ray), is.depth + 1);
}

//зная входящее излучение, расчитываем выходящее в зависимости от свойств материала объекта
//...

1.6 Последовательная сложность алгоритма

1.7 Информационный граф

1.8 Ресурс параллелизма алгоритма

1.9 Входные и выходные данные алгоритма

1.10 Свойства алгоритма

2 Программная реализация алгоритма

2.1 Особенности реализации последовательного алгоритма

2.2 Локальность данных и вычислений

2.3 Возможные способы и особенности параллельной реализации алгоритма

2.4 Масштабируемость алгоритма и его реализации

2.5 Динамические характеристики и эффективность реализации алгоритма

2.6 Выводы для классов архитектур

2.7 Существующие реализации алгоритма

3 Литература

http://www.scratchapixel.com/

http://www.raytracegroundup.com/

http://www.ray-tracing.ru/