Поиск в ширину (BFS): различия между версиями
Перейти к навигации
Перейти к поиску
[непроверенная версия] | [непроверенная версия] |
Daryin (обсуждение | вклад) (Общее описание алгоритма) |
Daryin (обсуждение | вклад) |
||
Строка 21: | Строка 21: | ||
=== Выводы для классов архитектур === | === Выводы для классов архитектур === | ||
=== Существующие реализации алгоритма === | === Существующие реализации алгоритма === | ||
+ | |||
+ | * [http://www.boost.org/libs/graph/doc/ Boost Graph Library] (функции <code>[http://www.boost.org/libs/graph/doc/breadth_first_search.html breadth_first_search]</code>, <code>[http://www.boost.org/doc/libs/1_58_0/libs/graph/doc/breadth_first_visit.html breadth_first_visit]</code>). | ||
+ | |||
== Литература == | == Литература == | ||
<references /> | <references /> |
Версия 00:29, 11 июня 2015
Содержание
- 1 Свойства и структура алгоритмов
- 1.1 Общее описание алгоритма
- 1.2 Математическое описание
- 1.3 Вычислительное ядро алгоритма
- 1.4 Макроструктура алгоритма
- 1.5 Описание схемы реализации последовательного алгоритма
- 1.6 Последовательная сложность алгоритма
- 1.7 Информационный граф
- 1.8 Описание ресурса параллелизма алгоритма
- 1.9 Описание входных и выходных данных
- 1.10 Свойства алгоритма
- 2 Программная реализация алгоритмов
- 2.1 Особенности реализации последовательного алгоритма
- 2.2 Описание локальности данных и вычислений
- 2.3 Возможные способы и особенности реализации параллельного алгоритма
- 2.4 Масштабируемость алгоритма и его реализации
- 2.5 Динамические характеристики и эффективность реализации алгоритма
- 2.6 Выводы для классов архитектур
- 2.7 Существующие реализации алгоритма
- 3 Литература
1 Свойства и структура алгоритмов
Алгоритм поиска в ширину (англ. Breadth-First Search, BFS) позволяет вычислить кратчайшие расстояния (в терминах количества рёбер) от выделенной вершины ориентированного графа до всех остальных вершин, и/или построить корневое направленное дерево, расстояния в котором совпадают с расстояниями в исходном графе. Алгоритм решает задачу поиска кратчайшего пути на графе в случае одинаковых весов рёбер. Впервые алгоритм поиска в ширину описан в работах Мура[1] и Ли[2].