Алгоритм Беллмана-Форда: различия между версиями

Материал из Алговики
Перейти к навигации Перейти к поиску
[непроверенная версия][непроверенная версия]
(Общее описание алгоритма)
 
Строка 21: Строка 21:
 
=== Выводы для классов архитектур ===
 
=== Выводы для классов архитектур ===
 
=== Существующие реализации алгоритма ===
 
=== Существующие реализации алгоритма ===
 +
 +
* [http://www.boost.org/libs/graph/doc/ Boost Graph Library] (функция <code>[http://www.boost.org/libs/graph/doc/bellman_ford_shortest.html bellman_ford_shortest]).
 +
 
== Литература ==
 
== Литература ==
  
 
<references />
 
<references />

Версия 01:01, 11 июня 2015

1 Свойства и структура алгоритмов

1.1 Общее описание алгоритма

Алгоритм Беллмана-Форда[1][2][3] предназначен для решения задачи поиска кратчайшего пути на графе. Для заданного ориентированного взвешенного графа алгоритм находит кратчайшие расстояния от выделенной вершины-источника до всех остальных вершин графа. Алгоритм Беллмана-Форда масштабируется хуже других алгоритмов решения указанной задачи (сложность [math]O(mn)[/math] против [math]O(m + n\ln n)[/math] у алгоритма Дейкстры), однако его отличительной особенностью является применимость к графам с произвольными, в том числе отрицательными, весами.

1.2 Математическое описание

1.3 Вычислительное ядро алгоритма

1.4 Макроструктура алгоритма

1.5 Описание схемы реализации последовательного алгоритма

1.6 Последовательная сложность алгоритма

1.7 Информационный граф

1.8 Описание ресурса параллелизма алгоритма

1.9 Описание входных и выходных данных

1.10 Свойства алгоритма

2 Программная реализация алгоритмов

2.1 Особенности реализации последовательного алгоритма

2.2 Описание локальности данных и вычислений

2.3 Возможные способы и особенности реализации параллельного алгоритма

2.4 Масштабируемость алгоритма и его реализации

2.5 Динамические характеристики и эффективность реализации алгоритма

2.6 Выводы для классов архитектур

2.7 Существующие реализации алгоритма

3 Литература

  1. Bellman, Richard. “On a Routing Problem.” Quarterly of Applied Mathematics 16 (1958): 87–90.
  2. Ford, L R. Network Flow Theory. Rand.org, RAND Corporation, 1958.
  3. Moore, Edward F. “The Shortest Path Through a Maze,” 285–92, 1959.