Алгоритм Форда-Фалкерсона: различия между версиями

Материал из Алговики
Перейти к навигации Перейти к поиску
[непроверенная версия][непроверенная версия]
Строка 23: Строка 23:
 
=== Выводы для классов архитектур ===
 
=== Выводы для классов архитектур ===
 
=== Существующие реализации алгоритма ===
 
=== Существующие реализации алгоритма ===
 +
 +
* [http://www.boost.org/libs/graph/doc/ Boost Graph Library] (функция <code>[http://www.boost.org/libs/graph/doc/edmonds_karp_max_flow.html edmonds_karp_max_flow]</code>): алгоритм Эдмонса–Карпа, сложность <math>O(nm^2)</math> для действительных весов и <math>O(Kmn)</math>.
 +
 
== Литература ==
 
== Литература ==
  
 
<references />
 
<references />

Версия 02:18, 11 июня 2015

1 Свойства и структура алгоритмов

1.1 Общее описание алгоритма

Алгоритм Форда-Фалкерсона[1] (с последующими усовершенствованиями Эдмондса-Карпа[2] и Е. А. Диница[3]) предназначен для решения задачи о максимальном потоке в транспортной сети. Время работы алгоритма [math]O(n^2m)[/math] (для алгоритма Диница). В случае целых пропускных способностей, не превосходящих [math]K[/math], сложность [math]O(Km)[/math].

1.2 Математическое описание

1.3 Вычислительное ядро алгоритма

1.4 Макроструктура алгоритма

1.5 Описание схемы реализации последовательного алгоритма

1.6 Последовательная сложность алгоритма

1.7 Информационный граф

1.8 Описание ресурса параллелизма алгоритма

Основной объём вычислений в алгоритме Форда-Фалкерсона приходится на поиск путей от источника к стоку. С этой целью может применяться поиск в ширину, который хорошо распараллеливается. Наилучших результатов можно достичь, если распределить вершины между узлами по слоям примерно одинаковой толщина, так что в каждом слое вершины были бы примерно на одинаковом удалении от источника (такое расслоение также можно найти поиском в ширину).

1.9 Описание входных и выходных данных

1.10 Свойства алгоритма

2 Программная реализация алгоритмов

2.1 Особенности реализации последовательного алгоритма

2.2 Описание локальности данных и вычислений

2.3 Возможные способы и особенности реализации параллельного алгоритма

2.4 Масштабируемость алгоритма и его реализации

2.5 Динамические характеристики и эффективность реализации алгоритма

2.6 Выводы для классов архитектур

2.7 Существующие реализации алгоритма

  • Boost Graph Library (функция edmonds_karp_max_flow): алгоритм Эдмонса–Карпа, сложность [math]O(nm^2)[/math] для действительных весов и [math]O(Kmn)[/math].

3 Литература

  1. Ford, L R, Jr., and D R Fulkerson. “Maximal Flow Through a Network.” Canadian Journal of Mathematics 8 (1956): 399–404. doi:10.4153/CJM-1956-045-5.
  2. Edmonds, Jack, and Richard M Karp. “Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems.” Journal of the ACM 19, no. 2 (April 1972): 248–64. doi:10.1145/321694.321699.
  3. Диниц, Е. А. “Алгоритм решения задачи о максимальном потоке в сети со степенной оценкой.” Доклады АН СССР 194, no. 4 (1970): 754–57.