Алгоритм Дейкстры: различия между версиями
[непроверенная версия] | [непроверенная версия] |
Daryin (обсуждение | вклад) |
Daryin (обсуждение | вклад) |
||
Строка 21: | Строка 21: | ||
=== Информационный граф === | === Информационный граф === | ||
=== Описание ресурса параллелизма алгоритма === | === Описание ресурса параллелизма алгоритма === | ||
+ | |||
+ | Алгоритм Дейкстры допускает эффективную параллелизацию<ref>Crauser, A, K Mehlhorn, U Meyer, and P Sanders. “A Parallelization of Dijkstra's Shortest Path Algorithm,” Proceedings of Mathematical Foundations of Computer Science / Lecture Notes in Computer Science, 1450:722–31, Berlin, Heidelberg: Springer, 1998. doi:10.1007/BFb0055823.</ref>, среднее время работы <math>O(n^{1/3}\ln n)</math> с объёмом вычислений <math>O(n \ln n + m)</math>. | ||
+ | |||
+ | [[Алгоритм Δ-шагания]] может рассматриваться как параллельная версия алгоритма Дейкстры. | ||
+ | |||
=== Описание входных и выходных данных === | === Описание входных и выходных данных === | ||
=== Свойства алгоритма=== | === Свойства алгоритма=== |
Версия 19:17, 11 июня 2015
Содержание
- 1 Свойства и структура алгоритмов
- 1.1 Общее описание алгоритма
- 1.2 Математическое описание
- 1.3 Вычислительное ядро алгоритма
- 1.4 Макроструктура алгоритма
- 1.5 Описание схемы реализации последовательного алгоритма
- 1.6 Последовательная сложность алгоритма
- 1.7 Информационный граф
- 1.8 Описание ресурса параллелизма алгоритма
- 1.9 Описание входных и выходных данных
- 1.10 Свойства алгоритма
- 2 Программная реализация алгоритмов
- 2.1 Особенности реализации последовательного алгоритма
- 2.2 Описание локальности данных и вычислений
- 2.3 Возможные способы и особенности реализации параллельного алгоритма
- 2.4 Масштабируемость алгоритма и его реализации
- 2.5 Динамические характеристики и эффективность реализации алгоритма
- 2.6 Выводы для классов архитектур
- 2.7 Существующие реализации алгоритма
- 3 Литература
1 Свойства и структура алгоритмов
1.1 Общее описание алгоритма
Алгоритм Дейкстры[1] предназначен для решения задачи поиска кратчайшего пути на графе. Для заданного ориентированного взвешенного графа с неотрицательными весами алгоритм находит кратчайшие расстояния от выделенной вершины-источника до всех остальных вершин графа. Алгоритм Дейкстры (с использованием фибоначчиевой кучи[2]) выполняется за время [math]O(m + n \ln n)[/math] и является асимптотически быстрейшим из известных последовательных алгоритмов для данного класса задач.
1.2 Математическое описание
1.3 Вычислительное ядро алгоритма
1.4 Макроструктура алгоритма
1.5 Описание схемы реализации последовательного алгоритма
1.6 Последовательная сложность алгоритма
Последовательная сложность алгоритма равна [math]O(C_1 m + C_2n)[/math], где
- [math]C_1[/math] – количество операций уменьшения расстояния до вершины;
- [math]C_2[/math] – количество операций вычисления минимума.
Оригинальный алгоритм Дейкстры использовал в качестве внутренней структуры данных списки, для которых [math]C_1 = O(1)[/math], [math]C_2 = O(n)[/math], так что общая сложность составляла [math]O(n^2)[/math].
При использовании фибоначчиевой кучи[2] время вычисления минимума сокращается до [math]C_2 = O(\ln n)[/math], так что общая сложность равна [math]O(m + n \ln n)[/math], что является асимптотически наилучшим известным результатом для данного класса задач.
1.7 Информационный граф
1.8 Описание ресурса параллелизма алгоритма
Алгоритм Дейкстры допускает эффективную параллелизацию[3], среднее время работы [math]O(n^{1/3}\ln n)[/math] с объёмом вычислений [math]O(n \ln n + m)[/math].
Алгоритм Δ-шагания может рассматриваться как параллельная версия алгоритма Дейкстры.
1.9 Описание входных и выходных данных
1.10 Свойства алгоритма
2 Программная реализация алгоритмов
2.1 Особенности реализации последовательного алгоритма
2.2 Описание локальности данных и вычислений
2.3 Возможные способы и особенности реализации параллельного алгоритма
2.4 Масштабируемость алгоритма и его реализации
2.5 Динамические характеристики и эффективность реализации алгоритма
2.6 Выводы для классов архитектур
2.7 Существующие реализации алгоритма
- Boost Graph Library (функции
dijkstra_shortest_paths
,dijkstra_shortest_paths_no_color_map
), сложность [math]O(m + n \ln n)[/math].
3 Литература
- ↑ Dijkstra, E W. “A Note on Two Problems in Connexion with Graphs.” Numerische Mathematik 1, no. 1 (December 1959): 269–71. doi:10.1007/BF01386390.
- ↑ 2,0 2,1 Fredman, Michael L, and Robert Endre Tarjan. “Fibonacci Heaps and Their Uses in Improved Network Optimization Algorithms.” Journal of the ACM 34, no. 3 (July 1987): 596–615. doi:10.1145/28869.28874.
- ↑ Crauser, A, K Mehlhorn, U Meyer, and P Sanders. “A Parallelization of Dijkstra's Shortest Path Algorithm,” Proceedings of Mathematical Foundations of Computer Science / Lecture Notes in Computer Science, 1450:722–31, Berlin, Heidelberg: Springer, 1998. doi:10.1007/BFb0055823.