Алгоритм Гопкрофта-Карпа: различия между версиями

Материал из Алговики
Перейти к навигации Перейти к поиску
[непроверенная версия][непроверенная версия]
Строка 24: Строка 24:
  
 
=== Вычислительное ядро алгоритма ===
 
=== Вычислительное ядро алгоритма ===
 +
Основная вычислительная сложность алгоритма приходится на операции [[Поиск в ширину (BFS)|поиска в ширину]] и [[Поиск в глубину (DFS)|поиска в глубину]].
 +
 
=== Макроструктура алгоритма ===
 
=== Макроструктура алгоритма ===
 
=== Описание схемы реализации последовательного алгоритма ===
 
=== Описание схемы реализации последовательного алгоритма ===

Версия 00:09, 25 июня 2015

1 Свойства и структура алгоритмов

1.1 Общее описание алгоритма

Алгоритм Гопкрофта-Карпа[1] предназначен для решения задачи о назначениях в случае единичных цен. По заданному двудольному графу алгоритм находит максимальное паросочетание за время [math]O(m \sqrt{n})[/math].

1.2 Математическое описание

Граф [math]G = (V, E)[/math] называется двудольным, если его вершины можно разделить на две части [math]V = X \sqcup Y[/math], так что каждое ребро [math]e \in E[/math] соединяет вершины из [math]X[/math] и [math]Y[/math]. Набор рёбер [math]M \subseteq E[/math] называется паросочетанием, если каждая вершина [math]v \in V[/math] принадлежит не более чем одному ребру из [math]M[/math]. Требуется найти максимальное паросочетание – паросочетание с максимально возможным числом рёбер.

Вершина [math]v \in V[/math] называется свободной, если она не принадлежит ни одному ребру из [math]M[/math]. Простой путь

[math] P: e_1 = (v_1, v_2), e_2 = (v_2, v_3), \ldots, e_{2k-1} = (v_{2k-1}, v_{2k}) [/math]

называется увеличивающей цепью, если его концы [math]v_1[/math] и [math]v_{2k}[/math] – свободные вершины, а каждое второе ребро принадлежит текущему паросочетанию:

[math] e_2, e_4, \ldots, e_{2k-2} \in M. [/math]

Паросочетание [math]M[/math] является максимальным, если для него не существует увеличивающей цепи.

Множество [math]M'[/math], полученное заменой в [math]M[/math] рёбер [math]e_2, e_4, \ldots, e_{2k-2}[/math] на рёбра [math]e_1, e_3, \ldots, e_{2k-1}[/math], является паросочетанием и содержит на одно ребро больше, чем [math]M[/math]. Множество [math]M' = M \mathop{\Delta} P[/math], где [math]\mathop{\Delta}[/math] обозначает операцию симметрической разности множеств.

На каждом шаге алгоритма Гопкрофта-Карпа строится максимальное по включению множество кратчайших увеличивающих цепей [math]\{ P_1, \ldots, P_q \}[/math], не пересекающихся по вершинам, и текущее паросочетание [math]M[/math] заменяется на [math]M = M \mathop{\Delta} P_1 \mathop{\Delta} P_2 \mathop{\Delta} \dots \mathop{\Delta} P_q[/math]. Гарантируется, что число шагов не превышает [math]2 (\sqrt{\mu} + 1) = O(\sqrt{n})[/math], где [math]\mu[/math] – число рёбер максимального паросочетания.

Для поиска максимального множества кратчайших увеличивающих цепей применяется поиск в ширину с последующим поиском в глубину.

1.3 Вычислительное ядро алгоритма

Основная вычислительная сложность алгоритма приходится на операции поиска в ширину и поиска в глубину.

1.4 Макроструктура алгоритма

1.5 Описание схемы реализации последовательного алгоритма

1.6 Последовательная сложность алгоритма

1.7 Информационный граф

1.8 Описание ресурса параллелизма алгоритма

1.9 Описание входных и выходных данных

1.10 Свойства алгоритма

2 Программная реализация алгоритмов

2.1 Особенности реализации последовательного алгоритма

2.2 Описание локальности данных и вычислений

2.3 Возможные способы и особенности реализации параллельного алгоритма

2.4 Масштабируемость алгоритма и его реализации

2.5 Динамические характеристики и эффективность реализации алгоритма

2.6 Выводы для классов архитектур

2.7 Существующие реализации алгоритма

3 Литература

  1. Hopcroft, John E, and Richard M Karp. “An $N^{5/2} $ Algorithm for Maximum Matchings in Bipartite Graphs.” SIAM Journal on Computing 2, no. 4 (1973): 225–31. doi:10.1137/0202019.