Методы решения СЛАУ с трёхдиагональными матрицами: различия между версиями

Материал из Алговики
Перейти к навигации Перейти к поиску
[непроверенная версия][непроверенная версия]
(нет различий)

Версия 16:25, 8 июля 2015

1 Методы решения СЛАУ с трёхдиагональными матрицами

Во многих математических моделях удаётся свести задачу к СЛАУ[1][2] [math]Ax = b[/math] с трёхдиагональной матрицей

[math] A = \begin{bmatrix} a_{11} & a_{12} & 0 & \cdots & \cdots & 0 \\ a_{21} & a_{22} & a_{23}& \cdots & \cdots & 0 \\ 0 & a_{32} & a_{33} & \cdots & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & a_{n-1 n-2} & a_{n-1 n-1} & a_{n-1 n} \\ 0 & \cdots & \cdots & 0 & a_{n n-1} & a_{n n} \\ \end{bmatrix} [/math]


1.1 Метод прогонки

Прогонка[3] – последовательный алгоритм решения трёхдиагональной СЛАУ – является частным случаем общего метода исключения неизвестных, однако получила специальное название из-за распространённости задач такого типа в прикладных исследованиях.

1.2 Метод сдваивания Стоуна

Метод сдваивания Стоуна[4][5]

1.3 Метод циклической редукции

Метод циклической редукции[6][7]


1.4 Метод окаймления

Метод окаймления


1.5 Последовательно-параллельный вариант прогонки

2 Литература

  1. Воеводин В.В. Вычислительные основы линейной алгебры. М.: Наука, 1977.
  2. Воеводин В.В., Кузнецов Ю.А. Матрицы и вычисления. М.: Наука, 1984.
  3. Самарский А.А., Николаев Е.С. Методы решения сеточных уравнений. М.: Наука, 1978.
  4. Stone H.S. An Efficient Parallel Algorithm for the Solution of a Tridiagonal Linear System of Equations // J. ACM, Vol. 20, No. 1 (Jan. 1973), P. 27-38.
  5. Stone H.S. Parallel Tridiagonal Equation Solvers // ACM Trans. on Math. Software, Vol. 1, No. 4 (Dec. 1975), P. 289-307.
  6. Buneman O. A Compact Non-iterative Poisson Solver // Rep. 294, Inst. for Plasma Res., Stanford U., Stanford, Calif., 1969.
  7. Buzbee B.L., Golub G.H., Nielson C.W. On Direct Methods for Solving Poisson's Equations // SIAM J. Numer. Anal., Vol. 7, No. 4 (Dec. 1970), P. 627-656.