Участник:Сорокин Александр/Метод сопряженных градиентов (Решение СЛАУ): различия между версиями
Перейти к навигации
Перейти к поиску
Строка 4: | Строка 4: | ||
Метод сопряженных градиентов представляет собой итерационный метод для численного решения системы уравнений с симметричной и положительно определенной матрицей. Данный метод часто применяется для решения систем уравнений с разряженными матрицами, когда количество неизвестных слишком велико чтобы использовать прямые методы решения, например метод Гаусса. | Метод сопряженных градиентов представляет собой итерационный метод для численного решения системы уравнений с симметричной и положительно определенной матрицей. Данный метод часто применяется для решения систем уравнений с разряженными матрицами, когда количество неизвестных слишком велико чтобы использовать прямые методы решения, например метод Гаусса. | ||
=== Математическое описание алгоритма === | === Математическое описание алгоритма === | ||
+ | === Вычислительное ядро алгоритма === | ||
+ | === Макроструктура алгоритма === | ||
+ | === Схема реализации последовательного алгоритма === | ||
+ | === Последовательная сложность алгоритма === | ||
+ | === Информационный граф === | ||
+ | === Ресурс параллелизма алгоритма === | ||
+ | === Входные и выходные данные алгоритма === | ||
+ | === Свойства алгоритма === | ||
+ | == Программная реализация алгоритма == | ||
+ | === Особенности реализации последовательного алгоритма === | ||
+ | === Локальность данных и вычислений === | ||
+ | === Возможные способы и особенности параллельной реализации алгоритма === | ||
+ | === Масштабируемость алгоритма и его реализации === | ||
+ | === Динамические характеристики и эффективность реализации алгоритма === | ||
+ | === Выводы для классов архитектур === | ||
+ | === Существующие реализации алгоритма === | ||
+ | == Литература == |
Версия 20:56, 21 октября 2017
Метод сопряженных градиентов — численный метод решения систем линейных алгебраических уравнений, является итерационным методом Крыловского типа.
Содержание
- 1 Свойства и структура алгоритма
- 1.1 Общее описание алгоритма
- 1.2 Математическое описание алгоритма
- 1.3 Вычислительное ядро алгоритма
- 1.4 Макроструктура алгоритма
- 1.5 Схема реализации последовательного алгоритма
- 1.6 Последовательная сложность алгоритма
- 1.7 Информационный граф
- 1.8 Ресурс параллелизма алгоритма
- 1.9 Входные и выходные данные алгоритма
- 1.10 Свойства алгоритма
- 2 Программная реализация алгоритма
- 2.1 Особенности реализации последовательного алгоритма
- 2.2 Локальность данных и вычислений
- 2.3 Возможные способы и особенности параллельной реализации алгоритма
- 2.4 Масштабируемость алгоритма и его реализации
- 2.5 Динамические характеристики и эффективность реализации алгоритма
- 2.6 Выводы для классов архитектур
- 2.7 Существующие реализации алгоритма
- 3 Литература
1 Свойства и структура алгоритма
1.1 Общее описание алгоритма
Метод сопряженных градиентов представляет собой итерационный метод для численного решения системы уравнений с симметричной и положительно определенной матрицей. Данный метод часто применяется для решения систем уравнений с разряженными матрицами, когда количество неизвестных слишком велико чтобы использовать прямые методы решения, например метод Гаусса.