Участник:Сорокин Александр/Метод сопряженных градиентов (Решение СЛАУ): различия между версиями
Строка 22: | Строка 22: | ||
Итак мы получили новый алгоритм решения: | Итак мы получили новый алгоритм решения: | ||
# Выбираем начальное приближение <math> x_0 </math> и А-ортогональные направления <math> p_1, ..., p_n </math>. | # Выбираем начальное приближение <math> x_0 </math> и А-ортогональные направления <math> p_1, ..., p_n </math>. | ||
− | # Для всех <math> k = 1, ... n: | + | # Для всех <math> k = 1, ... n </math>: |
## Выбираем <math> \alpha_k = \frac{p_k^T r_0}{p_k^T A p_k} </math>. | ## Выбираем <math> \alpha_k = \frac{p_k^T r_0}{p_k^T A p_k} </math>. | ||
## Обновляем <math> x_{k+1} = x_{k} + \alpha_k * p_k </math>. | ## Обновляем <math> x_{k+1} = x_{k} + \alpha_k * p_k </math>. |
Версия 18:18, 22 октября 2017
Содержание
- 1 Свойства и структура алгоритма
- 1.1 Общее описание алгоритма
- 1.2 Математическое описание алгоритма
- 1.3 Вычислительное ядро алгоритма
- 1.4 Макроструктура алгоритма
- 1.5 Схема реализации последовательного алгоритма
- 1.6 Последовательная сложность алгоритма
- 1.7 Информационный граф
- 1.8 Ресурс параллелизма алгоритма
- 1.9 Входные и выходные данные алгоритма
- 1.10 Свойства алгоритма
- 2 Программная реализация алгоритма
- 2.1 Особенности реализации последовательного алгоритма
- 2.2 Локальность данных и вычислений
- 2.3 Возможные способы и особенности параллельной реализации алгоритма
- 2.4 Масштабируемость алгоритма и его реализации
- 2.5 Динамические характеристики и эффективность реализации алгоритма
- 2.6 Выводы для классов архитектур
- 2.7 Существующие реализации алгоритма
- 3 Литература
1 Свойства и структура алгоритма
1.1 Общее описание алгоритма
Метод сопряженных градиентов представляет собой итерационный метод для численного решения системы уравнений с симметричной и положительно определенной матрицей, является итерационным методом Крыловского типа. Основная идея метода заключается в том, чтобы минимизировать на подпространствах Крылова А-норму ошибки.
1.2 Математическое описание алгоритма
Пусть необходимо найти решение системы уравнений [math] Ax = b [/math], где [math] A^* = A \gt 0 [/math].
Рассмотрим функционал [math] \phi (x) = \frac{1}{2}x^T A x - x^T b [/math].
Если [math] x^* [/math] это решение задачи минимизации данного функционала, то в этой точке градиент [math] \bigtriangledown \phi (x^*) = Ax^* - b [/math] должен быть равен нулю. Таким образом, минимизируя функционал [math] \phi (x) [/math] мы получим решение исходной системы.
1.2.1 Метод градиентного спуска
Как известно, градиент [math] \bigtriangledown \phi (x) [/math] является направлением наибольшего роста функции.
Метод градиентного спуска основан на стратегии движения в строну, противоположную возрастанию функционала. Оптимальным направлением в этом случае будет антиградиент [math] -\bigtriangledown \phi (x) [/math] и двигаться по нему нужно будет до тех пор, пока функционал убывает.
Таким образом можно построить следующий итерационный метод:
- Выберем произвольное начальное приближение [math] x_0 [/math].
- [math] x_{i+1} = x_{i} + \alpha_i p_i [/math], где [math] p_i [/math] — направление движения, а [math] \alpha_i [/math] — величина шага.
Из рассуждений выше понятно что оптимальным является направление [math] p_i = - \bigtriangledown \phi (x_{i}) = b - Ax_i = r_i [/math]. Величина [math] \alpha_i [/math] выбирается из соображений [math] \alpha_i = \underset{\alpha}{\operatorname{argmin}} \phi (x_i + \alpha p_i) [/math]. Аналитическую формулу [math] \alpha_i = \frac{\bigtriangledown\phi (x_i)^T \bigtriangledown\phi (x_i)}{\bigtriangledown\phi (x_i)^T A \bigtriangledown\phi (x_i)} = \frac{r_i ^T r_i}{r_i ^T A r_i} [/math] можно получить из [math] \frac{d}{d\alpha} \phi (x_i + \alpha p_i) = 0 [/math].
1.2.2 Метод сопряженных направлений
Метод градиентного спуска обычно сходится очень долго. Можно построить алгоритм который сходится не больше чем за n шагов.
Предположим что у нас есть n линейно-независимых векторов [math] p_1, ... p_n [/math] таких что [math] (p_i, p_j)_A = (Ap_i, p_j) = 0, i \neq j [/math].
Так как имеется n таких векторов, то они образуют базис пространства и любой вектор можно выразить через них, в том числе [math] x^* - x_0 = \sum_{i = 1}^n \alpha_i p_i [/math].
Домножим это равенство А-скалярно на [math] p_k [/math] для всех k. С левой стороны получим [math] (x^* - x_0, p_k)_A = (b - Ax_0, p_k) = p_k ^T r_0 [/math]. С правой: [math] \sum_{i = 1}^n \alpha_i (p_i, p_k)_A = \alpha_k (p_k, p_k)_A = \alpha_k p_k ^T A p_k [/math]. Тем самым [math] \alpha_k = \frac{p_k^T r_0}{p_k^T A p_k} [/math].
Итак мы получили новый алгоритм решения:
- Выбираем начальное приближение [math] x_0 [/math] и А-ортогональные направления [math] p_1, ..., p_n [/math].
- Для всех [math] k = 1, ... n [/math]:
- Выбираем [math] \alpha_k = \frac{p_k^T r_0}{p_k^T A p_k} [/math].
- Обновляем [math] x_{k+1} = x_{k} + \alpha_k * p_k [/math].