Участник:Nikkou/Фильтр Собеля: различия между версиями
Nikkou (обсуждение | вклад) (Новая страница: «Описание параллельной реализации алгоритма фильтрации Собеля. Автор: А.Г.Лыжов (401 групп…») |
Nikkou (обсуждение | вклад) |
||
Строка 22: | Строка 22: | ||
Это матрицы такого же размера, как исходное изображение, так как параметры градиента вычисляются для каждого пикселя изображения. | Это матрицы такого же размера, как исходное изображение, так как параметры градиента вычисляются для каждого пикселя изображения. | ||
− | Промежуточные горизонтальные и вертикальные производные вычисляются с помощью следующих двумерных сверток: | + | Промежуточные горизонтальные и вертикальные производные (а точнее, их аппроксимации) вычисляются с помощью следующих двумерных сверток: |
<math> | <math> | ||
Строка 48: | Строка 48: | ||
=== Макроструктура алгоритма === | === Макроструктура алгоритма === | ||
+ | Макроструктуру в основном составляют: | ||
+ | |||
+ | 1) двумерные свертки, приведенные в математическом описании; | ||
+ | |||
+ | 2) операция поэлементного геометрического среднего между промежуточными аппроксимациями. | ||
+ | |||
+ | Эти элементы алгоритма приведены в разделе с математическим описанием. | ||
+ | |||
=== Схема реализации последовательного алгоритма === | === Схема реализации последовательного алгоритма === | ||
+ | Запись на C++-подобном псевдокоде: | ||
+ | <pre>float *sobel(float *img) { | ||
+ | // diff_kernel is [1, 0, -1]; sum_kernel is [1, 2, 1] | ||
+ | horiz_der = conv(img, diff_kernel, sum_kernel); | ||
+ | vert_der = conv(img, sum_kernel, diff_kernel); | ||
+ | return combine_horiz_vert(horiz_der, vert_der); | ||
+ | } | ||
+ | |||
+ | for (int i = 0; i < n_images; i++) { | ||
+ | img = get_input(i); | ||
+ | res = sobel(img); | ||
+ | write_result(res); | ||
+ | }</pre> | ||
+ | |||
+ | Для повышения производительности в последовательной реализации всегда следует использовать сепарабельность свертки и считать двумерную свертку, как композицию из одномерных. | ||
+ | |||
+ | |||
=== Последовательная сложность алгоритма === | === Последовательная сложность алгоритма === | ||
+ | <math>O(M\cdot N \cdot K)</math> при обработке K изображений размером M*N, так как все макроэлементы, составляющие структуру алгоритма, выполняются за константу для одного пикселя. | ||
+ | |||
=== Информационный граф === | === Информационный граф === | ||
=== Ресурс параллелизма алгоритма === | === Ресурс параллелизма алгоритма === |
Версия 18:23, 2 декабря 2017
Описание параллельной реализации алгоритма фильтрации Собеля.
Автор: А.Г.Лыжов (401 группа).
Содержание
- 1 Свойства и структура алгоритма
- 1.1 Общее описание алгоритма
- 1.2 Математическое описание алгоритма
- 1.3 Вычислительное ядро алгоритма
- 1.4 Макроструктура алгоритма
- 1.5 Схема реализации последовательного алгоритма
- 1.6 Последовательная сложность алгоритма
- 1.7 Информационный граф
- 1.8 Ресурс параллелизма алгоритма
- 1.9 Входные и выходные данные алгоритма
- 1.10 Свойства алгоритма
- 2 Программная реализация алгоритма
- 2.1 Особенности реализации последовательного алгоритма
- 2.2 Локальность данных и вычислений
- 2.3 Возможные способы и особенности параллельной реализации алгоритма
- 2.4 Масштабируемость алгоритма и его реализации
- 2.5 Динамические характеристики и эффективность реализации алгоритма
- 2.6 Выводы для классов архитектур
- 2.7 Существующие реализации алгоритма
- 3 Литература
1 Свойства и структура алгоритма
1.1 Общее описание алгоритма
Фильтр Собеля - дискретный дифференциальный оператор, который используется для приближения градиента яркости изображения. Он часто используется в алгоритмах выделения границ при обработке изображений. Фильтр Собеля был предложен Ирвином Собелем и Гэри Фелдманом в лаборатории искусственного интеллекта Стэнфорда в 1968.
Фильтр Собеля легко вычислять, так как он основан на свертках изображения с небольшими ядрами. Из-за этого он аппроксимирует градиент со значительной погрешностью, но качество аппроксимации оказывается достаточным для многих практических приложений.
1.2 Математическое описание алгоритма
Исходные данные:
- изображение [math]A^{N\cdot M}[/math]
Вычисляемые данные:
- матрица аппроксимации модуля градиента [math]G^{N\cdot M}[/math]
- матрица аппроксимации направления градиента [math]\Theta^{N\cdot M}[/math]
Это матрицы такого же размера, как исходное изображение, так как параметры градиента вычисляются для каждого пикселя изображения.
Промежуточные горизонтальные и вертикальные производные (а точнее, их аппроксимации) вычисляются с помощью следующих двумерных сверток:
[math] \mathbf{G}_x = \begin{bmatrix} +1 & 0 & -1 \\ +2 & 0 & -2 \\ +1 & 0 & -1 \end{bmatrix} * \mathbf{A} ,\ \mathbf{G}_y = \begin{bmatrix} +1 & +2 & +1\\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix} * \mathbf{A} [/math]
Аппроксимации для модуля и направления градиента можно получить, скомбинировав эти производные:
[math]\mathbf{G} = \sqrt{ {\mathbf{G}_x}^2 + {\mathbf{G}_y}^2 }[/math]
[math]\mathbf{\Theta} = \operatorname{atan}\left({ \mathbf{G}_y \over \mathbf{G}_x }\right)[/math]
1.3 Вычислительное ядро алгоритма
Вычислительное ядро совпадает с алгоритмом, так как все описанные операции выполняются за [math]O(M\cdot N)[/math] на одном изображении.
1.4 Макроструктура алгоритма
Макроструктуру в основном составляют:
1) двумерные свертки, приведенные в математическом описании;
2) операция поэлементного геометрического среднего между промежуточными аппроксимациями.
Эти элементы алгоритма приведены в разделе с математическим описанием.
1.5 Схема реализации последовательного алгоритма
Запись на C++-подобном псевдокоде:
float *sobel(float *img) { // diff_kernel is [1, 0, -1]; sum_kernel is [1, 2, 1] horiz_der = conv(img, diff_kernel, sum_kernel); vert_der = conv(img, sum_kernel, diff_kernel); return combine_horiz_vert(horiz_der, vert_der); } for (int i = 0; i < n_images; i++) { img = get_input(i); res = sobel(img); write_result(res); }
Для повышения производительности в последовательной реализации всегда следует использовать сепарабельность свертки и считать двумерную свертку, как композицию из одномерных.
1.6 Последовательная сложность алгоритма
[math]O(M\cdot N \cdot K)[/math] при обработке K изображений размером M*N, так как все макроэлементы, составляющие структуру алгоритма, выполняются за константу для одного пикселя.