Приложение 2: различия между версиями

Материал из Алговики
Перейти к навигации Перейти к поиску
[непроверенная версия][непроверенная версия]
(Полностью удалено содержимое страницы)
Строка 1: Строка 1:
 +
= Нахождение суммы элементов массива сдваиванием =
  
 +
== Свойства и структура алгоритма ==
 +
 +
=== Общее описание алгоритма ===
 +
 +
'''Метод сдваивания''' используется в качестве быстрого варианта вычисления длинных последовательностей ассоциативных операций (например, массового суммирования). Получил распространение благодаря как наименьшей из возможных высоте алгортима, так и из-за ряда своих вычислительных характеристик, а также (в среде нечисленных алгоритмов) из-за своей рекурсивности, то есть лёгкости записи.
 +
 +
=== Математическое описание алгоритма ===
 +
 +
Исходные данные: одномерный массив <math>n</math> чисел.
 +
 +
Вычисляемые данные: сумма элементов массива.
 +
 +
Формулы метода: элементы на каждом этапе алгоритма разбиваются на пары. В каждой из пар находится сумма составляющих её элементов. На следующем этапе на пары разбиваются уже эти суммы (и те элементы, которые не вошли в уже вычисленные суммы), и т. д.
 +
 +
=== Вычислительное ядро алгоритма ===
 +
 +
Вычислительное ядро последовательно-параллельного метода суммирования можно составить как из элементарных бинарных (всего <math>n - 1</math>) вычислений сумм, так и (рекуррентно) из набора реализаций метода сдваивания меньших размерностей.
 +
 +
=== Макроструктура алгоритма ===
 +
 +
Как уже записано в описании ядра алгоритма, основную часть метода составляют рекурсивные вызовы сумм массивов меньшей размерности.
 +
 +
=== Схема реализации последовательного алгоритма ===
 +
 +
В своём чистом виде суммирование сдваиванием редко используют при последовательной реализации, поскольку при этом усложняется общая схема алгоритма и резко растёт потребность в памяти, нужной для хранения промежуточных данных.
 +
 +
=== Последовательная сложность алгоритма ===
 +
 +
Для вычисления суммы массива, состоящего из <math>N</math> элементов, при любых разложениях <math>N</math> на пары суть алгоритма сводится к простому переставлению скобок в формуле суммирования, и количество операций неизменно и равно <math>N - 1</math>. Поэтому алгоритм должен быть отнесён к алгоритмам ''линейной сложности'' по количеству последовательных операций.
 +
 +
=== Информационный граф ===
 +
 +
На рис.1 изображён граф алгоритма. В данном случае выполнено суммирование 16 элементов массива.
 +
Вершины, соответствующие входным данным, даны синим цветом, выходным данным - красным цветом.
 +
 +
[[file:binary-tree-based summation graph.png|center|thumb|500px|Рисунок 1. Суммирование массива методом сдваивания]]
 +
 +
=== Ресурс параллелизма алгоритма ===
 +
 +
Для суммирования массива порядка <math>n</math> методом сдваивания в параллельном варианте требуется последовательно выполнить <math>\lceil \log_2 n \rceil</math> ярусов с убывающим (от <math>\frac{n}{2}</math> до <math>1</math>) количеством операций суммирования.
 +
При классификации по высоте ЯПФ, таким образом, метод сдваивания относится к алгоритмам с ''логарифмической сложностью''. При классификации по ширине ЯПФ его сложность будет ''линейной''.
 +
 +
=== Входные и выходные данные алгоритма ===
 +
 +
Входные данные: массив <math>x</math> (элементы <math>x_i</math>).
 +
 +
Дополнительные ограничения: отсутствуют.
 +
 +
Объём входных данных: <nowiki/><math>N</math>.
 +
 +
Выходные данные: сумма элементов массива.
 +
 +
Объём выходных данных: один скаляр.
 +
 +
=== Свойства алгоритма ===
 +
 +
Соотношение последовательной и параллельной сложности в случае неограниченных ресурсов, как хорошо видно, является <math>\frac{n}{\log_2 n}</math> (отношение линейной к логарифмической). При этом вычислительная мощность алгоритма, как отношение числа операций к суммарному объему входных и выходных данных — всего-навсего ''1 (входных и выходных данных столько же, сколько операций)''. При этом алгоритм полностью детерминирован. Дуги информационного графа нелокальны, от яруса к ярусу наблюдается показательный рост их длины, при любом размещении вершин графа.
 +
 +
== Литература ==
 +
<references />

Версия 16:56, 16 сентября 2015

1 Нахождение суммы элементов массива сдваиванием

1.1 Свойства и структура алгоритма

1.1.1 Общее описание алгоритма

Метод сдваивания используется в качестве быстрого варианта вычисления длинных последовательностей ассоциативных операций (например, массового суммирования). Получил распространение благодаря как наименьшей из возможных высоте алгортима, так и из-за ряда своих вычислительных характеристик, а также (в среде нечисленных алгоритмов) из-за своей рекурсивности, то есть лёгкости записи.

1.1.2 Математическое описание алгоритма

Исходные данные: одномерный массив [math]n[/math] чисел.

Вычисляемые данные: сумма элементов массива.

Формулы метода: элементы на каждом этапе алгоритма разбиваются на пары. В каждой из пар находится сумма составляющих её элементов. На следующем этапе на пары разбиваются уже эти суммы (и те элементы, которые не вошли в уже вычисленные суммы), и т. д.

1.1.3 Вычислительное ядро алгоритма

Вычислительное ядро последовательно-параллельного метода суммирования можно составить как из элементарных бинарных (всего [math]n - 1[/math]) вычислений сумм, так и (рекуррентно) из набора реализаций метода сдваивания меньших размерностей.

1.1.4 Макроструктура алгоритма

Как уже записано в описании ядра алгоритма, основную часть метода составляют рекурсивные вызовы сумм массивов меньшей размерности.

1.1.5 Схема реализации последовательного алгоритма

В своём чистом виде суммирование сдваиванием редко используют при последовательной реализации, поскольку при этом усложняется общая схема алгоритма и резко растёт потребность в памяти, нужной для хранения промежуточных данных.

1.1.6 Последовательная сложность алгоритма

Для вычисления суммы массива, состоящего из [math]N[/math] элементов, при любых разложениях [math]N[/math] на пары суть алгоритма сводится к простому переставлению скобок в формуле суммирования, и количество операций неизменно и равно [math]N - 1[/math]. Поэтому алгоритм должен быть отнесён к алгоритмам линейной сложности по количеству последовательных операций.

1.1.7 Информационный граф

На рис.1 изображён граф алгоритма. В данном случае выполнено суммирование 16 элементов массива. Вершины, соответствующие входным данным, даны синим цветом, выходным данным - красным цветом.

Рисунок 1. Суммирование массива методом сдваивания

1.1.8 Ресурс параллелизма алгоритма

Для суммирования массива порядка [math]n[/math] методом сдваивания в параллельном варианте требуется последовательно выполнить [math]\lceil \log_2 n \rceil[/math] ярусов с убывающим (от [math]\frac{n}{2}[/math] до [math]1[/math]) количеством операций суммирования. При классификации по высоте ЯПФ, таким образом, метод сдваивания относится к алгоритмам с логарифмической сложностью. При классификации по ширине ЯПФ его сложность будет линейной.

1.1.9 Входные и выходные данные алгоритма

Входные данные: массив [math]x[/math] (элементы [math]x_i[/math]).

Дополнительные ограничения: отсутствуют.

Объём входных данных: [math]N[/math].

Выходные данные: сумма элементов массива.

Объём выходных данных: один скаляр.

1.1.10 Свойства алгоритма

Соотношение последовательной и параллельной сложности в случае неограниченных ресурсов, как хорошо видно, является [math]\frac{n}{\log_2 n}[/math] (отношение линейной к логарифмической). При этом вычислительная мощность алгоритма, как отношение числа операций к суммарному объему входных и выходных данных — всего-навсего 1 (входных и выходных данных столько же, сколько операций). При этом алгоритм полностью детерминирован. Дуги информационного графа нелокальны, от яруса к ярусу наблюдается показательный рост их длины, при любом размещении вершин графа.

1.2 Литература