Участник:Lonalone/Генерация гауссовского вектора методом линейных преобразований: различия между версиями

Материал из Алговики
Перейти к навигации Перейти к поиску
Строка 5: Строка 5:
 
=== Общее описание алгоритма ===
 
=== Общее описание алгоритма ===
 
В статье приведен алгоритм генерации n-мерного случайного вектора, распределенного по нормальному закону, с помощью метода линейных преобразований<ref name="VVV">Балдин К.В., Уткин В.Б. Информационные системы в экономике. - М.:ИТК Дашков и К, 2008. - 395 с.</ref>. Этот метод является одним из наиболее распространенных так называемых корреляционных методов, применяемых в случаях, когда при моделировании непрерывного n-мерного случайного вектора достаточно обеспечить лишь требуемые значения элементов корреляционной матрицы этого вектора (для случая нормального распределения выполнение названного требования означает выполнение достаточного условия полного статистического соответствия теоретического и моделируемого распределений<ref name="VVVVVV"> https://ru.wikipedia.org/wiki/Многомерное_нормальное_распределение</ref>) и вектора математических ожиданий компонент.<br><br>
 
В статье приведен алгоритм генерации n-мерного случайного вектора, распределенного по нормальному закону, с помощью метода линейных преобразований<ref name="VVV">Балдин К.В., Уткин В.Б. Информационные системы в экономике. - М.:ИТК Дашков и К, 2008. - 395 с.</ref>. Этот метод является одним из наиболее распространенных так называемых корреляционных методов, применяемых в случаях, когда при моделировании непрерывного n-мерного случайного вектора достаточно обеспечить лишь требуемые значения элементов корреляционной матрицы этого вектора (для случая нормального распределения выполнение названного требования означает выполнение достаточного условия полного статистического соответствия теоретического и моделируемого распределений<ref name="VVVVVV"> https://ru.wikipedia.org/wiki/Многомерное_нормальное_распределение</ref>) и вектора математических ожиданий компонент.<br><br>
Идея алгоритма заключается в линейном преобразовании случайного n-мерного вектора Y c независимыми распределенными по стандартному нормальному закону компонентами в случайный вектор X с требуемыми корреляционной матрицей и вектором математических ожиданий компонент. Вектор Y же получается с помощью приближения по ЦПТ равномерным распределением на [0,1].
+
Идея алгоритма заключается в линейном преобразовании случайного n-мерного вектора Y c независимыми, одинаково распределенными по стандартному нормальному закону компонентами в случайный вектор X с требуемыми корреляционной матрицей и вектором математических ожиданий компонент.
  
 
=== Математическое описание алгоритма ===
 
=== Математическое описание алгоритма ===

Версия 20:28, 22 октября 2018

Автор описания: Меньших И. М.


1 Свойства и структура алгоритма

1.1 Общее описание алгоритма

В статье приведен алгоритм генерации n-мерного случайного вектора, распределенного по нормальному закону, с помощью метода линейных преобразований[1]. Этот метод является одним из наиболее распространенных так называемых корреляционных методов, применяемых в случаях, когда при моделировании непрерывного n-мерного случайного вектора достаточно обеспечить лишь требуемые значения элементов корреляционной матрицы этого вектора (для случая нормального распределения выполнение названного требования означает выполнение достаточного условия полного статистического соответствия теоретического и моделируемого распределений[2]) и вектора математических ожиданий компонент.

Идея алгоритма заключается в линейном преобразовании случайного n-мерного вектора Y c независимыми, одинаково распределенными по стандартному нормальному закону компонентами в случайный вектор X с требуемыми корреляционной матрицей и вектором математических ожиданий компонент.

1.2 Математическое описание алгоритма

1.3 Вычислительное ядро алгоритма

1.4 Макроструктура алгоритма

1.5 Схема реализации последовательного алгоритма

1.6 Последовательная сложность алгоритма

1.7 Информационный граф

1.8 Ресурс параллелизма алгоритма

1.9 Входные и выходные данные алгоритма

1.10 Свойства алгоритма

2 Программная реализация алгоритма

2.1 Особенности реализации последовательного алгоритма

2.2 Локальность данных и вычислений

2.3 Возможные способы и особенности параллельной реализации алгоритма

2.4 Масштабируемость алгоритма и его реализации

2.5 Динамические характеристики и эффективность реализации алгоритма

2.6 Выводы для классов архитектур

2.7 Существующие реализации алгоритма

3 Литература

  1. Балдин К.В., Уткин В.Б. Информационные системы в экономике. - М.:ИТК Дашков и К, 2008. - 395 с.
  2. https://ru.wikipedia.org/wiki/Многомерное_нормальное_распределение