Уровень алгоритма

Последовательно-параллельный метод суммирования: различия между версиями

Материал из Алговики
Перейти к навигации Перейти к поиску
[непроверенная версия][досмотренная версия]
 
(не показаны 44 промежуточные версии 10 участников)
Строка 1: Строка 1:
== Описание свойств и структуры алгоритма ==
+
{{level-a}}
  
=== Словесное описание алгоритма ===
+
Основные авторы описания: [[Участник:Frolov|А.В.Фролов]].
  
'''Последовательно-параллельный метод''' используется в качестве блочной реализации вычисления длинных последовательностей ассоциативных операций (например, массового суммирования). Получил распространение благодаря следующим особенностям: а) реализует приём получения двойных циклов из одинарных; б) в последовательной архитектуре компьютеров позволял для ряда операций уменьшать влияние округления на результат. Здесь будем описывать его версию для суммирования чисел.
+
== Свойства и структура алгоритма ==
  
=== Математическое описание ===
+
=== Общее описание алгоритма ===
 +
 
 +
'''Последовательно-параллельный метод''' используется в качестве эрзаца блочной реализации вычисления длинных последовательностей ассоциативных операций (например, массового суммирования). Получил распространение благодаря следующим особенностям: а) реализует приём получения двойных циклов из одинарных; б) в последовательной архитектуре компьютеров позволял для ряда операций уменьшать влияние округления на результат. Здесь будем описывать его версию для суммирования чисел.
 +
 
 +
=== Математическое описание алгоритма ===
  
 
Исходные данные: одномерный массив <math>N</math> чисел.
 
Исходные данные: одномерный массив <math>N</math> чисел.
Строка 36: Строка 40:
 
:<math>\sum_{i = 1}^p S_i</math>
 
:<math>\sum_{i = 1}^p S_i</math>
  
=== Описание схемы реализации последовательного алгоритма ===
+
=== Схема реализации последовательного алгоритма ===
  
 
Формулы метода описаны выше. Последовательность исполнения суммирования может быть разная — как по возрастанию, так и по убыванию индексов. Обычно без особых причин порядок не меняют, используя естественный (возрастание индексов).
 
Формулы метода описаны выше. Последовательность исполнения суммирования может быть разная — как по возрастанию, так и по убыванию индексов. Обычно без особых причин порядок не меняют, используя естественный (возрастание индексов).
Строка 46: Строка 50:
 
=== Информационный граф ===
 
=== Информационный граф ===
  
Опишем граф алгоритма в виде рисунка. В данном случае выполнено суммирование 30 элементов массива.
+
На рис.1 изображён граф алгоритма. В данном случае выполнено суммирование 24 элементов массива.
  
[[file:series-parallel summation graph.png|center|thumb|600px]]
+
[[file:series-parallel summation graph.png|center|thumb|600px|Рисунок 1. Последовательно-параллельный метод суммирования массива]]
 +
 
 +
<center>
 +
{{#widget:Algoviewer
 +
|url=seq_par/Algo_view_seq_par4.html
 +
|width=1300
 +
|height=800
 +
|border=1
 +
}}
 +
<br/>
 +
Интерактивное изображение графа алгоритма без входных и выходных данных для случая суммирования 20 элементов массива
 +
</center>
  
 
=== Описание ресурса параллелизма алгоритма ===
 
=== Описание ресурса параллелизма алгоритма ===
Строка 60: Строка 75:
 
При классификации по высоте ЯПФ, таким образом, последовательно-параллельный метод относится к алгоритмам со сложностью ''корень квадратный''. При классификации по ширине ЯПФ его сложность будет такой же — ''корень квадратный''.
 
При классификации по высоте ЯПФ, таким образом, последовательно-параллельный метод относится к алгоритмам со сложностью ''корень квадратный''. При классификации по ширине ЯПФ его сложность будет такой же — ''корень квадратный''.
  
=== Описание входных и выходных данных ===
+
=== Входные и выходные данные алгоритма ===
  
 
Входные данные: массив <math>\vec{x}</math> (элементы <math>x_i</math>).
 
Входные данные: массив <math>\vec{x}</math> (элементы <math>x_i</math>).
Строка 76: Строка 91:
 
Соотношение последовательной и параллельной сложности в случае неограниченных ресурсов, как хорошо видно, является ''корнем квадратным'' (отношение линейной к корню квадратному). При этом вычислительная мощность алгоритма, как отношение числа операций к суммарному объему входных и выходных данных — всего-навсего ''1 (входных и выходных данных столько же, сколько операций)''. При этом алгоритм не вполне полностью детерминирован, суммирование может быть проведено в разном порядке. Использование другого порядка выполнения ассоциативных операций может дать, с учётом особенностей входных данных, уменьшение влияния ошибок округления на результат. Дуги информационного графа локальны.
 
Соотношение последовательной и параллельной сложности в случае неограниченных ресурсов, как хорошо видно, является ''корнем квадратным'' (отношение линейной к корню квадратному). При этом вычислительная мощность алгоритма, как отношение числа операций к суммарному объему входных и выходных данных — всего-навсего ''1 (входных и выходных данных столько же, сколько операций)''. При этом алгоритм не вполне полностью детерминирован, суммирование может быть проведено в разном порядке. Использование другого порядка выполнения ассоциативных операций может дать, с учётом особенностей входных данных, уменьшение влияния ошибок округления на результат. Дуги информационного графа локальны.
  
== Программная реализация ==
+
== Программная реализация алгоритма ==
  
 
=== Особенности реализации последовательного алгоритма ===
 
=== Особенности реализации последовательного алгоритма ===
Строка 102: Строка 117:
 
Можно записать и аналогичные схемы, где суммирование будет проводиться в обратном порядке. Подчеркнём, что граф алгоритма обеих схем — [[#Информационный граф|один и тот же]]!
 
Можно записать и аналогичные схемы, где суммирование будет проводиться в обратном порядке. Подчеркнём, что граф алгоритма обеих схем — [[#Информационный граф|один и тот же]]!
  
=== Описание локальности данных и вычислений ===
+
=== Возможные способы и особенности параллельной реализации алгоритма ===
==== Описание локальности алгоритма ====
+
 
==== Описание локальности реализации алгоритма ====
+
В чистом виде алгоритм последовательно-параллельного метода для суммирования массива встречается редко, в основном встречаются его модификации, например для случаев вычисления скалярного произведения (вместо элементов массива будут фигурировать произведения элементов двух массивов), равномерной нормы (вместо элементов массива — их модули) и т. п. В случае вычисления скалярного произведения в одном из частных случаев подобный приём применён в библиотеке BLAS (там одна из размерностей равна 5), но, видимо, не для распараллеливания, а для оптимизации работы с регистрами процессора. Между тем, разбиения массивов на группы для вычислений частных сумм могут быть полезны и для лучшего использования кэша на отдельных узлах.
===== Описание структуры обращений в память и качественная оценка локальности =====
+
 
===== Количественная оценка локальности =====
+
=== Результаты прогонов ===
===== Анализ на основе теста Apex-Map =====
 
=== Возможные способы и особенности реализации параллельного алгоритма ===
 
=== Масштабируемость алгоритма и его реализации ===
 
==== Описание масштабируемости алгоритма ====
 
==== Описание масштабируемости реализации алгоритма ====
 
=== Динамические характеристики и эффективность реализации алгоритма ===
 
 
=== Выводы для классов архитектур ===
 
=== Выводы для классов архитектур ===
=== Существующие реализации алгоритма ===
 
  
В чистом виде алгоритм последовательно-параллельного метода для суммирования массива встречается редко, в основном встречаются его модификации, например для случаев вычисления скалярного произведения (вместо элементов массива будут фигурировать произведения элементов двух массивов), равномерной нормы (вместо элементов массива — их модули) и т. п. В случае вычисления скалярного произведения в одном из частных случаев подобный приём применён в библиотеке BLAS (там одна из размерностей равна 5), но, видимо, не для распараллеливания, а для оптимизации работы с регистрами процессора. Между тем, разбиения массивов на группы для вычислений частных сумм могут быть полезны и для лучшего использования кэша на отдельных узлах.
+
== Литература ==
 +
 
 +
<references />
 +
 
 +
[[Категория:Законченные статьи]]
 +
[[Категория:Последовательно-параллельная группировка операций]]
 +
[[Категория:Векторные операции]]
 +
 
 +
[[En:The serial-parallel summation method]]

Текущая версия на 15:10, 8 июля 2022


Основные авторы описания: А.В.Фролов.

1 Свойства и структура алгоритма

1.1 Общее описание алгоритма

Последовательно-параллельный метод используется в качестве эрзаца блочной реализации вычисления длинных последовательностей ассоциативных операций (например, массового суммирования). Получил распространение благодаря следующим особенностям: а) реализует приём получения двойных циклов из одинарных; б) в последовательной архитектуре компьютеров позволял для ряда операций уменьшать влияние округления на результат. Здесь будем описывать его версию для суммирования чисел.

1.2 Математическое описание алгоритма

Исходные данные: одномерный массив [math]N[/math] чисел.

Вычисляемые данные: сумма элементов массива.

Формулы метода: число [math]N[/math] разлагается в выражение типа [math]N = (p - 1) k + q[/math], где [math]p[/math] — количество процессоров, [math]k = \lceil \frac{N}{p} \rceil[/math], [math]q = N - k (p - 1)[/math].

После этого на [math]i[/math]-м процессоре ([math]i \lt p[/math]) последовательно вычисляется сумма элементов массива, начиная с [math](i - 1) k + 1[/math]-го, до [math]i k[/math]-го.

[math]S_i = \sum_{j = 1}^k x_{k (i - 1) + j}[/math]

На [math]p[/math]-м процессоре последовательно вычисляется сумма элементов массива, начиная с [math](p - 1) k + 1[/math]-го до [math](p - 1) k + q[/math]-го.

[math]S_p = \sum_{j = 1}^q x_{k (p - 1) + j}[/math]

По окончании этого процесса процессоры обмениваются данными и на одном из них (либо на всех одновременно, если результат нужен далее на всех процессорах) получившиеся суммы суммируются последовательно друг с другом.

[math]\sum_{i = 1}^p S_i[/math]

1.3 Вычислительное ядро алгоритма

Вычислительное ядро последовательно-параллельного метода суммирования можно составить из множественных (всего [math]p[/math]) вычислений сумм элементов массива:

[math]S_i = \sum_{j = 1}^k x_{k (i - 1) + j}[/math]

и ещё одного вычисления суммы элементов частичных сумм

[math]\sum_{i = 1}^p S_i[/math]

1.4 Макроструктура алгоритма

Как уже записано в описании ядра алгоритма, основную часть метода составляют множественные (всего [math]p + 1[/math]) вычисления сумм

[math]S_i = \sum_{j = 1}^k x_{k (i - 1) + j}[/math]
[math]\sum_{i = 1}^p S_i[/math]

1.5 Схема реализации последовательного алгоритма

Формулы метода описаны выше. Последовательность исполнения суммирования может быть разная — как по возрастанию, так и по убыванию индексов. Обычно без особых причин порядок не меняют, используя естественный (возрастание индексов).

1.6 Последовательная сложность алгоритма

Для вычисления суммы массива, состоящего из [math]N[/math] элементов, при любых разложениях [math]N[/math] суть алгоритма сводится к простому переставлению скобок в формуле суммирования, и количество операций неизменно и равно [math]N - 1[/math]. Поэтому алгоритм должен быть отнесён к алгоритмам линейной сложности по количеству последовательных операций.

1.7 Информационный граф

На рис.1 изображён граф алгоритма. В данном случае выполнено суммирование 24 элементов массива.

Рисунок 1. Последовательно-параллельный метод суммирования массива


Интерактивное изображение графа алгоритма без входных и выходных данных для случая суммирования 20 элементов массива

1.8 Описание ресурса параллелизма алгоритма

Для суммирования массива порядка [math]n[/math] последовательно-параллельным методом в параллельном варианте требуется последовательно выполнить следующие ярусы:

  • [math]k - 1[/math] ярусов суммирования по частям массива ([math]p[/math] ветвей),
  • [math]p - 1[/math] ярусов суммирования (одна последовательная ветвь).

Таким образом, в параллельном варианте критический путь алгоритма (и соответствующая ему высота ЯПФ) будет зависеть от произведённого разбиения массива на части. В оптимальном случае ([math]p = \sqrt{n}[/math]) высота ЯПФ будет равна [math]2 \sqrt{n} - 2[/math].

При классификации по высоте ЯПФ, таким образом, последовательно-параллельный метод относится к алгоритмам со сложностью корень квадратный. При классификации по ширине ЯПФ его сложность будет такой же — корень квадратный.

1.9 Входные и выходные данные алгоритма

Входные данные: массив [math]\vec{x}[/math] (элементы [math]x_i[/math]).

Дополнительные ограничения: отсутствуют.

Объём входных данных: [math]N[/math].

Выходные данные: сумма элементов массива.

Объём выходных данных: один скаляр.

1.10 Свойства алгоритма

Соотношение последовательной и параллельной сложности в случае неограниченных ресурсов, как хорошо видно, является корнем квадратным (отношение линейной к корню квадратному). При этом вычислительная мощность алгоритма, как отношение числа операций к суммарному объему входных и выходных данных — всего-навсего 1 (входных и выходных данных столько же, сколько операций). При этом алгоритм не вполне полностью детерминирован, суммирование может быть проведено в разном порядке. Использование другого порядка выполнения ассоциативных операций может дать, с учётом особенностей входных данных, уменьшение влияния ошибок округления на результат. Дуги информационного графа локальны.

2 Программная реализация алгоритма

2.1 Особенности реализации последовательного алгоритма

В простейшем (без перестановок суммирования) варианте на Фортране можно записать так:

	DO  I = 1, P
		S (I) = X(K*(I-1)+1)
		IF (I.LQ.P) THEN
			DO J = 2,K
				S(I)=S(I)+X(K*(I-1)+J)
		             END DO
		ELSE
			DO J = 2,Q
				S(I)=S(I)+X(K*(I-1)+J)
		             END DO
		END IF
	END DO
	SUM = S(1)
	DO I = 2, P
		SUM = SUM + S(I)
	END DO

Можно записать и аналогичные схемы, где суммирование будет проводиться в обратном порядке. Подчеркнём, что граф алгоритма обеих схем — один и тот же!

2.2 Возможные способы и особенности параллельной реализации алгоритма

В чистом виде алгоритм последовательно-параллельного метода для суммирования массива встречается редко, в основном встречаются его модификации, например для случаев вычисления скалярного произведения (вместо элементов массива будут фигурировать произведения элементов двух массивов), равномерной нормы (вместо элементов массива — их модули) и т. п. В случае вычисления скалярного произведения в одном из частных случаев подобный приём применён в библиотеке BLAS (там одна из размерностей равна 5), но, видимо, не для распараллеливания, а для оптимизации работы с регистрами процессора. Между тем, разбиения массивов на группы для вычислений частных сумм могут быть полезны и для лучшего использования кэша на отдельных узлах.

2.3 Результаты прогонов

2.4 Выводы для классов архитектур

3 Литература