Обратная подстановка (вещественный вариант): различия между версиями
Перейти к навигации
Перейти к поиску
[непроверенная версия] | [непроверенная версия] |
Frolov (обсуждение | вклад) |
Frolov (обсуждение | вклад) |
||
Строка 3: | Строка 3: | ||
=== Словесное описание алгоритма === | === Словесное описание алгоритма === | ||
− | '''Обратный ход метода Гаусса''' - решение СЛАУ с правой треугольной матрицей <math>U</math>. Матрица <math>U</math> - одна из составляющих матрицы <math>A</math> и получается из <math>LU</math>-разложения последней каким-либо из многочисленных способов (например, простое разложение Гаусса, разложение Гаусса с выбором ведущего элемента, компактная схема Гаусса, [[Метод Холецкого (квадратного корня), точечный вещественный вариант|разложение Холецкого]] и др.). В силу треугольности U решение СЛАУ является одной из модификаций метода подстановки и записывается простыми формулами. | + | '''Обратный ход метода Гаусса''' - решение СЛАУ с правой треугольной матрицей <math>U</math>. Матрица <math>U</math> - одна из составляющих матрицы <math>A</math> и получается либо из <math>LU</math>-разложения последней каким-либо из многочисленных способов (например, простое разложение Гаусса, разложение Гаусса с выбором ведущего элемента, компактная схема Гаусса, [[Метод Холецкого (квадратного корня), точечный вещественный вариант|разложение Холецкого]] и др.), либо из других разложений. В силу треугольности <math>U</math> решение СЛАУ является одной из модификаций общего метода подстановки и записывается простыми формулами. |
=== Математическое описание === | === Математическое описание === |
Версия 09:48, 11 сентября 2014
1 Описание свойств и структуры алгоритма
1.1 Словесное описание алгоритма
Обратный ход метода Гаусса - решение СЛАУ с правой треугольной матрицей [math]U[/math]. Матрица [math]U[/math] - одна из составляющих матрицы [math]A[/math] и получается либо из [math]LU[/math]-разложения последней каким-либо из многочисленных способов (например, простое разложение Гаусса, разложение Гаусса с выбором ведущего элемента, компактная схема Гаусса, разложение Холецкого и др.), либо из других разложений. В силу треугольности [math]U[/math] решение СЛАУ является одной из модификаций общего метода подстановки и записывается простыми формулами.