Шаблон:Трёхдиагональная СЛАУ: различия между версиями

Материал из Алговики
Перейти к навигации Перейти к поиску
[непроверенная версия][непроверенная версия]
м (Frolov переименовал страницу Трёхдиагональная СЛАУ в Шаблон:Трёхдиагональная СЛАУ: без "Шаблон" вставка не работает)
м
Строка 1: Строка 1:
:<math>
+
{{Шаблон:Трёхдиагональная СЛАУ в стандартном виде}}
A = \begin{bmatrix}
 
a_{11} & a_{12}  & 0 &    \cdots & \cdots & 0 \\
 
a_{21} & a_{22}  & a_{23}&  \cdots & \cdots & 0 \\
 
0 &  a_{32} & a_{33}  &    \cdots & \cdots & 0 \\
 
\vdots & \vdots & \ddots & \ddots & \ddots & 0 \\
 
0 & \cdots & \cdots & a_{n-1 n-2} & a_{n-1 n-1}  & a_{n-1 n} \\
 
0 & \cdots & \cdots & 0 & a_{n n-1}  & a_{n n} \\
 
\end{bmatrix}, x = \begin{bmatrix}
 
x_{1} \\
 
x_{2} \\
 
\vdots \\
 
x_{n} \\
 
\end{bmatrix}, b = \begin{bmatrix}
 
b_{1} \\
 
b_{2} \\
 
\vdots \\
 
b_{n} \\
 
\end{bmatrix}
 
</math>
 
  
 
Часто, однако, при изложении сути метода прогонки<ref name="SETKI">Самарский А.А., Николаев Е.С. Методы решения сеточных уравнений. М.: Наука, 1978.</ref> элементы правой части и матрицы системы обозначают и нумеруют по-другому, например СЛАУ может иметь вид (<math>N=n-1</math>)
 
Часто, однако, при изложении сути метода прогонки<ref name="SETKI">Самарский А.А., Николаев Е.С. Методы решения сеточных уравнений. М.: Наука, 1978.</ref> элементы правой части и матрицы системы обозначают и нумеруют по-другому, например СЛАУ может иметь вид (<math>N=n-1</math>)

Версия 16:03, 18 декабря 2015

[math] A = \begin{bmatrix} a_{11} & a_{12} & 0 & \cdots & \cdots & 0 \\ a_{21} & a_{22} & a_{23}& \cdots & \cdots & 0 \\ 0 & a_{32} & a_{33} & \cdots & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & a_{n-1 n-2} & a_{n-1 n-1} & a_{n-1 n} \\ 0 & \cdots & \cdots & 0 & a_{n n-1} & a_{n n} \\ \end{bmatrix}, x = \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \\ \end{bmatrix}, b = \begin{bmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{n} \\ \end{bmatrix} [/math]

Часто, однако, при изложении сути метода прогонки[1] элементы правой части и матрицы системы обозначают и нумеруют по-другому, например СЛАУ может иметь вид ([math]N=n-1[/math])

[math] A = \begin{bmatrix} c_{0} & -b_{0} & 0 & \cdots & \cdots & 0 \\ -a_{1} & c_{1} & -b_{1} & \cdots & \cdots & 0 \\ 0 & -a_{2} & c_{2} & \cdots & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & -a_{N-1} & c_{N-1} & -b_{N-1} \\ 0 & \cdots & \cdots & 0 & -a_{N} & c_{N} \\ \end{bmatrix}\begin{bmatrix} y_{0} \\ y_{1} \\ \vdots \\ y_{N} \\ \end{bmatrix} = \begin{bmatrix} f_{0} \\ f_{1} \\ \vdots \\ f_{N} \\ \end{bmatrix} [/math]

или, если записывать отдельно по уравнениям, то

[math]c_{0} y_{0} - b_{0} y_{1} = f_{0}[/math],

[math]-a_{i} y_{i-1} + c_{i} y_{i} - b_{i} y_{i+1} = f_{i}, 1 \le i \le N-1[/math],

[math]-a_{N} y_{N-1} + c_{N} y_{N} = f_{N}[/math].

  1. Самарский А.А., Николаев Е.С. Методы решения сеточных уравнений. М.: Наука, 1978.