Участник:Anton goy/Самоорганизующиеся карты Кохонена: различия между версиями

Материал из Алговики
Перейти к навигации Перейти к поиску
Строка 25: Строка 25:
 
== Математическое описание алгоритма ==
 
== Математическое описание алгоритма ==
  
Пусть <math>\mathcal{L} = \left\{  \mathbf{x}_i \right\}_{i=1}^{N}</math> - некоторое подмножество точек пространства <math>\mathbb{R}^D</math>, <math>\mathbf{x}_i = \left(  x_{i}^{(1)}, \dots, x_{i}^{(D)} \right) \in \mathbb{R}^D</math>. В машинном обучении множество <math>\mathcal{L}</math> называют обучающей выборкой. Кроме того, задана структура слоя Кохонена: выбрана прямоугольная или шестиугольная связность между нейронами, задано общее количество нейронов (обозанчим его через <math>L = X \times Y</math>, где <math>X</math> и <math>Y</math> - количество нейронов в строках и столбцах соответственно), а также для каждого нейрона определено его положение в слое Кохонена <math>\mathbf(x, y)</math>, где <math>x \in \left\{ 1, \dots, X \right\}</math>, а <math>y \in \left\{ 1, \dots, Y \right\}</math>. Пусть <math>\mathbf{w}_{x,y} = \left( w_{x,y}^{(1)}, \dots, w_{x,y}^{(D)} \right) \in \mathbb{R}^D</math> - вектор весов соответствующий нейрону в позиции <math>(x, y)</math>.
+
Пусть <math>\mathcal{L} = \left\{  \mathbf{x}_i \right\}_{i=1}^{N}</math> - некоторое подмножество точек пространства <math>\mathbb{R}^D</math>, <math>\mathbf{x}_i = \left(  x_{i}^{(1)}, \dots, x_{i}^{(D)} \right) \in \mathbb{R}^D</math>. В машинном обучении множество <math>\mathcal{L}</math> называют обучающей выборкой.  
 +
 
 +
Для каждого Пусть <math>\mathbf{w}_{x,y} = \left( w_{x,y}^{(1)}, \dots, w_{x,y}^{(D)} \right) \in \mathbb{R}^D</math> - вектор весов соответствующий нейрону в позиции <math>(x, y)</math>.
  
 
'''Алгоритм обучения:'''
 
'''Алгоритм обучения:'''

Версия 15:33, 9 октября 2016


Автор: Гой Антон, 617 группа.

1 Свойства и структура алгоритмов

1.1 Общее описание алгоритма

Рисунок 1. Структура самоогранизующейся карты Кохонена с шестиугольной решеткой

Самоорганизующаяся карта Кохонена (англ. Self-Organizing Map или сокращено SOM) - это разновидность нейронных сетей, относящаяся к алгоритмам обучения без учителя. Основная цель - найти скрытые закономерности в данных по средством снижения размерности исходного пространства. Важным свойством карт Кохонена является то, что они строят отображение в пространство низкой размерности (обычно двумерное) таким образом, что топология исходного пространства сохраняется. Результат данного отображения - правильная решетка из обученных нейронов - называется "картой" исходного пространства. Алгоритм был разработан известным финским учёным, заслуженным академиком Финской Академии Наук Теуво Кохоненом в 1984(2) году. Карты Кохенана находят успешное применение в задачах кластеризации и визуализации, а также для снижения размерности и детектирования аномалий в данных.

Карты Кохонена и по своей архитектуре, и по методу обучения отличаются от обычных нейронных сетей прямого распространения. C точки зрения метода обучения, карты Кохонена не используют градиентные методы для минимизации ошибки (как это делается в сетях прямого распространения), поскольку являются алгоритмом обучения без учителя и никак не могут учитывать информацию и метках классов. Поэтому нейронная сеть обучается через соревнование между нейронами: на каждом шаге алгоритма для случайного объекта из обучающей выборки выбирается нейрон-победитель (best matching unit, BMU), который в определенном смысле наиболее похож на данный объект.

Рисунок 2б. Топология слоя Кохонена с прямоугольными ячейками
Рисунок 2а. Топология слоя Кохонена с шестиугольными ячейками

А архитектура карты Кохонена (Рис. 1) представляет два слоя: первый слой состоит из входных нейронов (их количество равно размерности исходного пространства), второй слой (его называют слоем Кохонена) представляет собой строго упорядоченную решетку, в узлах которой расположены нейроны-сумматоры, соедененные со всеми входами сети. Для задания топологии слоя Кохонена (Рис. 2) используют либо шестиугольные (Рис. 2а), либо прямоугольные (Рис. 2б) ячейки, в которых распологаются нейроны. Шестиугольные ячейки часто являются более предпочтительными, так как расстояние от центра выбранной ячейки до ее соседей одинаково.

Каждый нейрон n_j слоя Кохонена описывается вектором весов \mathbf{w}_j, размерность которого совпадает с размерностью исходного пространства, и координатами нейрона на двумерной плоскости - \mathbf{r}_j.

Процесс обучения состоит в настройке векторов весов \mathbf{w}_j.

1.2 Математическое описание алгоритма

Пусть \mathcal{L} = \left\{ \mathbf{x}_i \right\}_{i=1}^{N} - некоторое подмножество точек пространства \mathbb{R}^D, \mathbf{x}_i = \left( x_{i}^{(1)}, \dots, x_{i}^{(D)} \right) \in \mathbb{R}^D. В машинном обучении множество \mathcal{L} называют обучающей выборкой.

Для каждого Пусть \mathbf{w}_{x,y} = \left( w_{x,y}^{(1)}, \dots, w_{x,y}^{(D)} \right) \in \mathbb{R}^D - вектор весов соответствующий нейрону в позиции (x, y).

Алгоритм обучения:

1. Найти начальное приближение весов \mathbf{w}_{x,y}, для \forall x=1, \dots, X и \forall y=1, \dots, Y.

2. Выбрать случайно номер объекта i \sim Unif[1, N].

3. Для всех пар (x, y) найти расстояние между \mathbf{x}_i и вектором весов \mathbf{w}_{x, y}

\rho(\mathbf{x}_i, \mathbf{w}_{x, y}) = \left\| \mathbf{x}_i - \mathbf{w}_{x, y} \right\|^2, \quad \forall x=1, \dots, X, \forall y=1, \dots, Y

4. Найти нейрон-победитель (x^*, y^*) = \arg \min_{\forall(x, y)} \rho(\mathbf{x}_i, \mathbf{w}_{x, y}), наиболее близкий к текущему объекту \mathbf{x}_i.

5. Для всех неронов (x, y) пересчитать их веса по следующей формуле:

\mathbf{w}_{x, y} \leftarrow \mathbf{w}_{x, y} + \alpha(t)h_{x^*, y^*}(t)(\mathbf{x}_i - \mathbf{w}_{x, y}),

где \alpha(t) - темп обучения (learning rate), монотонно убывающая функция от номера итерации t; h_{x^*, y^*}(t) =