Участник:IanaV/Алгоритм k means: различия между версиями
IanaV (обсуждение | вклад) |
IanaV (обсуждение | вклад) |
||
Строка 61: | Строка 61: | ||
3 Для каждого вектора <math>x_i, i = 1, ..., n: l_i^t = \arg \min_{j} \left\| \mathbf x - \mu_j^t \right\|^2 , j = 1, ..., k</math> | 3 Для каждого вектора <math>x_i, i = 1, ..., n: l_i^t = \arg \min_{j} \left\| \mathbf x - \mu_j^t \right\|^2 , j = 1, ..., k</math> | ||
4 Для каждого кластера: <math>\mu_i^{t+1} = \frac{1}{|S_i^t|} \sum_{x \in S_i^t} x</math>, <math>i = 1, .., k</math> | 4 Для каждого кластера: <math>\mu_i^{t+1} = \frac{1}{|S_i^t|} \sum_{x \in S_i^t} x</math>, <math>i = 1, .., k</math> | ||
− | 5 <b>if</b> (\exists i = 1, ..., k: | + | 5 <b>if</b> (<math>\exists i = 1, ..., k: \mu_i^t \neq \mu_i^{t+1}</math>) { |
6 t := t + 1; | 6 t := t + 1; | ||
7 } <b>else</b> { | 7 } <b>else</b> { |
Версия 00:16, 13 октября 2016
Авторы страницы: Валуйская Я.А. и Глотов Е.С.
Содержание
- 1 Свойства и структура алгоритма
- 1.1 Общее описание алгоритма
- 1.2 Математическое описание алгоритма
- 1.3 Вычислительное ядро алгоритма
- 1.4 Макроструктура алгоритма
- 1.5 Схема реализации последовательного алгоритма
- 1.6 Последовательная сложность алгоритма
- 1.7 Информационный граф
- 1.8 Ресурс параллелизма алгоритма
- 1.9 Входные и выходные данные алгоритма
- 1.10 Свойства алгоритма
- 2 Программная реализация алгоритма
- 3 Литература
1 Свойства и структура алгоритма
1.1 Общее описание алгоритма
Алгоритм k-means (k средних) - один из наиболее популярных алгоритмов кластеризации. Алгоритм был изобретён в 1950-х годах математиком Гуго Штейнгаузом, и почти одновременно его изобрел Стюарт Ллойд. Особую популярность алгоритм снискал после работы Маккуина.
Алгоритм кластеризации k-means решает задачу распределения N наблюдений по K кластерам так, чтобы наблюдение принадлежало одному кластеру, который имеет наименьшее удаление от наблюдения.
1.2 Математическое описание алгоритма
Исходные данные:
- множество наблюдений [math]X = \{x_1, x_2, ..., x_n\}[/math], где каждое наблюдение [math]x_i \in R^d, i = 1, ..., n[/math];
- количество кластеров [math]k \in N, k \leq n[/math]
Обозначения:
- [math]S = \{S_1, S_2, ..., S_k \} [/math] - множество кластеров, которые удовлетворяют следующим условиям:
- [math]S_i \bigcap S_j = \emptyset, i \neq j[/math];
- [math]X = {\bigcup \limits _{i = 1}^k S_i} [/math].
- [math]\mu_i, i = 1, ..., k[/math] - центр масс кластера [math]S_i[/math]
Выходные данные:
- [math]L = (l_1, l_2, ..., l_n)[/math] - набор меток, где метка [math]l_i \in [1, k][/math] - является порядковым номером кластера, к которому принадлежит вектор [math]x_i[/math]: [math] x_i \in S_{l_i}[/math]
Цель алгоритма k-means - распределить наблюдения из входного множества [math]X[/math] по [math]k[/math] кластерам [math]S = \{S_1, S_2, ..., S_k \} [/math] таким образом, чтобы сумма квадратов расстояний от каждой точки кластера до его центра по всем кластерам была минимальной:
[math]\arg\min_{S} \sum_{i=1}^{k} \sum_{x \in S_i} \left\| \mathbf x - \mu_i \right\|^2 [/math],
Алгоритм состоит из следующих шагов:
- Инициализация центров масс
На данном шаге задаются начальные значения центров масс [math] \mu_1^1, ..., \mu_k^1[/math]. Существует несколько способов их выбора. Они будут рассмотрены ниже. - t-ый шаг итерации:
- Распределение векторов по кластерам
На данном шаге каждый вектор [math]x \in X[/math] распределяется в свой кластер [math]S_i^t[/math] так, что:
[math]l_i^t = \arg \min_{j} \left\| \mathbf x - \mu_j^t \right\|^2 , j = 1, ..., k[/math] - Пересчет центров масс кластеров
На данном шаге происходит пересчет центров масс кластеров, полученных на предыдущем этапе:
[math]\mu_i^{t+1} = \frac{1}{|S_i^t|} \sum_{x \in S_i^t} x[/math]
- Распределение векторов по кластерам
- Критерий останова
[math]\mu_i^t = \mu_i^{t+1},[/math] для всех [math]i = 1, ..., k[/math]
1.3 Вычислительное ядро алгоритма
Вычислительном ядром алгоритма является шаг 2, состоящий из следующих этапов:
- распределение векторов по кластерам;
- пересчет центров масс кластеров.
Распределение векторов по кластерам заключается в следующем: для каждого вектора [math]x_i \in X, i = 1, ..., n[/math] необходимо посчитать расстояние между этим вектором и центром масс кластера [math]\mu_j^t, j = 1, ..., k[/math]. Следовательно, на каждой итерации необходимо выполнить [math]n * k[/math] операций вычисления расстояния между векторами.
Пересчет центров масс кластеров заключается в следующем: для каждого кластера [math]S_i^t \in S, i = 1, ..., k[/math] необходимо пересчитать кластер по формуле, приведенной в пункте выше. Следовательно, на каждой итерации необходимо выполнить [math]k[/math] операций пересчета центров масс кластеров.
1.4 Макроструктура алгоритма
Макрооперацией алгоритма является расстояние между векторами, в данном алгоритме используется Евклидова метрика:
[math]v \in R^m[/math] и [math]u \in R^m: d(v, u) = \sqrt{\sum_{j=1}^{m} (v_j - u_j)^2} [/math].
1.5 Схема реализации последовательного алгоритма
Псевдокод алгоритма:
Входные данные : Множество векторов [math]X[/math], количество кластеров [math]k[/math] Выходные данные : Набор меток [math]L[/math] принадлежности к кластеру 1 Инициализация центров масс [math]\mu_i^1, i = 1, ..., k[/math]; 2 t := 1; 3 Для каждого вектора [math]x_i, i = 1, ..., n: l_i^t = \arg \min_{j} \left\| \mathbf x - \mu_j^t \right\|^2 , j = 1, ..., k[/math] 4 Для каждого кластера: [math]\mu_i^{t+1} = \frac{1}{|S_i^t|} \sum_{x \in S_i^t} x[/math], [math]i = 1, .., k[/math] 5 if ([math]\exists i = 1, ..., k: \mu_i^t \neq \mu_i^{t+1}[/math]) { 6 t := t + 1; 7 } else { 8 break; 9 };
1.6 Последовательная сложность алгоритма
1.7 Информационный граф
1.8 Ресурс параллелизма алгоритма
1.9 Входные и выходные данные алгоритма
1.10 Свойства алгоритма
2 Программная реализация алгоритма
2.1 Масштабируемость алгоритма и его реализации
2.2 Существующие реализации алгоритма
Существуют следующие Open Source реализации алгоритма:
- ELKI - содержит реализацию алгоритма k-means на языке Java (в том числе реализацию улучшенного алгоритма k-means++)
- Weka - содержит реализацию k-means на языке Java
- Apache Mahout - содержит реализацию k-means в парадигме MapReduce
- Spark Mllib - содержит распределенную реализацию k-means
- Accord.NET - содержит реализацию k-means на C# (в том числе реализацию улучшенного алгоритма k-means++)
- MLPACK - содержит реализацию k-means на языке C++
- OpenCV - содержит реализацию k-means на C++. А также есть обертки для языков Python и Java
- SciPy - содержит реализацию k-means на языке Python
- Scikit-learn - содержит реализацию k-means на языке Python
- Julia - содержит реализацию алгоритма k-means на языке Julia
- Octave - содержит реализацию k-means на языке Octave
- R - содержит реализацию k-means на языке R
- Torch - содержит реализацию k-means на языке Lua