Уровень алгоритма

Определение диаметра графа: различия между версиями

Материал из Алговики
Перейти к навигации Перейти к поиску
[непроверенная версия][досмотренная версия]
(Общее описание алгоритма)
 
 
(не показаны 4 промежуточные версии 2 участников)
Строка 1: Строка 1:
== Свойства и структура алгоритмов ==
+
{{level-a}}
 +
 
 +
== Свойства и структура алгоритма ==
 
=== Общее описание алгоритма ===
 
=== Общее описание алгоритма ===
  
Строка 6: Строка 8:
 
'''Алгоритм ''i''FUB'''<ref>Crescenzi, Pilu, Roberto Grossi, Michel Habib, Leonardo Lanzi, and Andrea Marino. “On Computing the Diameter of Real-World Undirected Graphs.” Theoretical Computer Science 514 (November 2013): 84–95. doi:10.1016/j.tcs.2012.09.018.</ref> (англ. ''iterative'' Fringe Upper Bound) позволяет уменьшить количество вызовов алгоритма поиска в ширину. Для многих реальных графов будет достаточно всего нескольких вызовов и общая сложность будет близка к линейной <math>O(m)</math>.
 
'''Алгоритм ''i''FUB'''<ref>Crescenzi, Pilu, Roberto Grossi, Michel Habib, Leonardo Lanzi, and Andrea Marino. “On Computing the Diameter of Real-World Undirected Graphs.” Theoretical Computer Science 514 (November 2013): 84–95. doi:10.1016/j.tcs.2012.09.018.</ref> (англ. ''iterative'' Fringe Upper Bound) позволяет уменьшить количество вызовов алгоритма поиска в ширину. Для многих реальных графов будет достаточно всего нескольких вызовов и общая сложность будет близка к линейной <math>O(m)</math>.
  
=== Математическое описание ===
+
=== Математическое описание алгоритма ===
 
=== Вычислительное ядро алгоритма ===
 
=== Вычислительное ядро алгоритма ===
 
=== Макроструктура алгоритма ===
 
=== Макроструктура алгоритма ===
=== Описание схемы реализации последовательного алгоритма ===
+
=== Схема реализации последовательного алгоритма ===
 
=== Последовательная сложность алгоритма ===
 
=== Последовательная сложность алгоритма ===
  
Строка 15: Строка 17:
  
 
=== Информационный граф ===
 
=== Информационный граф ===
=== Описание ресурса параллелизма алгоритма ===
+
=== Ресурс параллелизма алгоритма ===
=== Описание входных и выходных данных ===
+
=== Входные и выходные данные алгоритма ===
  
 
'''Входные данные''': неориентированный граф <math>(V, E)</math> (<math>n</math> вершин <math>v_i</math> и <math>m</math> рёбер).
 
'''Входные данные''': неориентированный граф <math>(V, E)</math> (<math>n</math> вершин <math>v_i</math> и <math>m</math> рёбер).
Строка 26: Строка 28:
 
'''Объём выходных данных''': <math>O(1)</math>.
 
'''Объём выходных данных''': <math>O(1)</math>.
  
=== Свойства алгоритма===
+
=== Свойства алгоритма ===
== Программная реализация алгоритмов ==
+
 
 +
== Программная реализация алгоритма ==
 
=== Особенности реализации последовательного алгоритма ===
 
=== Особенности реализации последовательного алгоритма ===
=== Описание локальности данных и вычислений ===
+
=== Возможные способы и особенности параллельной реализации алгоритма ===
=== Возможные способы и особенности реализации параллельного алгоритма ===
+
=== Результаты прогонов ===
=== Масштабируемость алгоритма и его реализации ===
 
=== Динамические характеристики и эффективность реализации алгоритма ===
 
 
=== Выводы для классов архитектур ===
 
=== Выводы для классов архитектур ===
=== Существующие реализации алгоритма ===
+
 
 
== Литература ==
 
== Литература ==
  
 
<references />
 
<references />
 +
 +
[[Категория:Начатые статьи]]
 +
 +
[[en:Longest shortest path]]

Текущая версия на 10:05, 7 июля 2022


1 Свойства и структура алгоритма

1.1 Общее описание алгоритма

Диаметром неориентированного графа называется максимальная длина кратчайшего пути между двумя вершинами. Классический способ определения диаметра – выполнить поиск в ширину от всех вершин, тогда диаметр равен максимальному из найденных расстояний. Сложность такого подхода составляет [math]O(mn)[/math], и в худшем случае (например, когда граф является циклом) эту оценку, по-видимому, улучшить нельзя.

Алгоритм iFUB[1] (англ. iterative Fringe Upper Bound) позволяет уменьшить количество вызовов алгоритма поиска в ширину. Для многих реальных графов будет достаточно всего нескольких вызовов и общая сложность будет близка к линейной [math]O(m)[/math].

1.2 Математическое описание алгоритма

1.3 Вычислительное ядро алгоритма

1.4 Макроструктура алгоритма

1.5 Схема реализации последовательного алгоритма

1.6 Последовательная сложность алгоритма

Последовательная сложность алгоритма iFUB равна [math]O(Bm)[/math], где [math]B[/math] – число вызовов алгоритма поиска в ширину, сложность каждого вызова [math]O(m)[/math]. В худшем случае (граф является циклом) [math]B = n[/math] и общая сложность равна [math]O(mn)[/math], однако для многих реальных графов [math]B = O(1)[/math] и общая сложность составляет [math]O(m)[/math].

1.7 Информационный граф

1.8 Ресурс параллелизма алгоритма

1.9 Входные и выходные данные алгоритма

Входные данные: неориентированный граф [math](V, E)[/math] ([math]n[/math] вершин [math]v_i[/math] и [math]m[/math] рёбер).

Объём входных данных: [math]O(m + n)[/math].

Выходные данные: диаметр графа [math](V, E)[/math].

Объём выходных данных: [math]O(1)[/math].

1.10 Свойства алгоритма

2 Программная реализация алгоритма

2.1 Особенности реализации последовательного алгоритма

2.2 Возможные способы и особенности параллельной реализации алгоритма

2.3 Результаты прогонов

2.4 Выводы для классов архитектур

3 Литература

  1. Crescenzi, Pilu, Roberto Grossi, Michel Habib, Leonardo Lanzi, and Andrea Marino. “On Computing the Diameter of Real-World Undirected Graphs.” Theoretical Computer Science 514 (November 2013): 84–95. doi:10.1016/j.tcs.2012.09.018.