Участник:Konstantin 013: различия между версиями

Материал из Алговики
Перейти к навигации Перейти к поиску
 
(не показано 37 промежуточных версий этого же участника)
Строка 3: Строка 3:
 
== Свойства и структура алгоритмов ==
 
== Свойства и структура алгоритмов ==
 
=== Общее описание алгоритма ===
 
=== Общее описание алгоритма ===
Данный алгоритм находит равновесие Нэша в игре двух лиц с конечным числом стратегий
+
Данный алгоритм находит равновесия Нэша в игре двух лиц с конечным числом стратегий
  
 
=== Математическое описание алгоритма ===
 
=== Математическое описание алгоритма ===
Строка 10: Строка 10:
 
<math> \Gamma \langle X, Y, F(x, y), G(x, y) \rangle </math>. Ситуация <math> (x^0, y^0) </math> называется ''равновесием по Нэшу'' игры <math> \Gamma </math> если:
 
<math> \Gamma \langle X, Y, F(x, y), G(x, y) \rangle </math>. Ситуация <math> (x^0, y^0) </math> называется ''равновесием по Нэшу'' игры <math> \Gamma </math> если:
 
<math>
 
<math>
     \max_{x \in X} F(x, y^0) = F(x^0, y^0) \quad , \quad \max_{y \in Y} F(x^0, y) = G(x^0, y^0)
+
     \max_{x \in X} F(x, y^0) = F(x^0, y^0) \quad , \quad \max_{y \in Y} G(x^0, y) = G(x^0, y^0)
 
</math>
 
</math>
  
Строка 19: Строка 19:
  
 
=== Вычислительное ядро алгоритма ===
 
=== Вычислительное ядро алгоритма ===
Сначала будет естественно для каждого столбца матрицы <math> F </math> найти максимум в нём и для каждой строки матрицы <math> G  </math> найти максимум в ней. Т.е. мы ищем для каждого из <math> m </math> векторов <math> R^n </math> мы ищем максимум и для каждого из <math> n </math> векторов <math> R^m </math> мы ищем максимум.
+
Сначала будет естественно для каждого столбца матрицы <math> F </math> найти максимум в нём (таким образом мы находим наилучший ответ 1-го игрока, при фиксированной стратегии 2-го) и для каждой строки матрицы <math> G  </math> найти максимум в ней (ищем наилучшие ответы 2-го игрока). Т.е. мы ищем для каждого из <math> m </math> векторов <math> R^n </math> мы ищем максимум и для каждого из <math> n </math> векторов <math> R^m </math> мы ищем максимум.
 
После этого для каждой ситуации <math> (x^0, y^0) </math> несложно понять, является ли она равновесием Нэша: нужно просто проверить, что <math> F(x^0, y^0) </math> - максимальный элемент в  <math> y^0 </math>-м столбце матрицы  <math> F </math> и  <math> G(x^0, y^0) </math> - максимальный элемент в  <math> x^0 </math>-ой строке матрицы  <math> G </math>.
 
После этого для каждой ситуации <math> (x^0, y^0) </math> несложно понять, является ли она равновесием Нэша: нужно просто проверить, что <math> F(x^0, y^0) </math> - максимальный элемент в  <math> y^0 </math>-м столбце матрицы  <math> F </math> и  <math> G(x^0, y^0) </math> - максимальный элемент в  <math> x^0 </math>-ой строке матрицы  <math> G </math>.
  
 
=== Макроструктура алгоритма ===
 
=== Макроструктура алгоритма ===
Если алгоритм использует в качестве составных частей другие алгоритмы, то это указывается в данном разделе. Если в дальнейшем имеет смысл описывать алгоритм не в максимально детализированном виде (т.е. на уровне арифметических операций), а давать только его макроструктуру, то здесь описывается структура и состав макроопераций. Если в других разделах описания данного алгоритма в рамках AlgoWiki используются введенные здесь макрооперации, то здесь даются пояснения, необходимые для однозначной интерпретации материала. Типичные варианты макроопераций, часто встречающиеся на практике: нахождение суммы элементов вектора, скалярное произведение векторов, умножение  матрицы на вектор, решение системы линейных уравнений малого порядка, сортировка, вычисление значения функции в некоторой точке, поиск минимального значения в массиве, транспонирование матрицы, вычисление обратной матрицы и многие другие.
 
  
Описание макроструктуры очень полезно на практике. Параллельная структура алгоритмов может быть хорошо видна именно на макроуровне, в то время как максимально детальное отображение всех операций может сильно усложнить картину. Аналогичные аргументы касаются и многих вопросов реализации, и если для алгоритма эффективнее и/или технологичнее оставаться на макроуровне, оформив макровершину, например, в виде отдельной процедуры, то это и нужно отразить в данном разделе.  
+
Алгоритм в качестве подзадачи многократно использует поис максимума в массиве (<math> n </math> раз в массиве длины <math> m </math> и <math> m </math> раз в массиве длины <math> n </math>). Затем, для все возможных позиций проверяется, является она равноесием по нэшу, как это описывалось в разделе выше.
Выбор макроопераций не однозначен, причем, выделяя различные макрооперации, можно делать акценты на различных свойствах алгоритмов. С этой точки зрения, в описании одного алгоритма может быть представлено несколько вариантов его макроструктуры, дающих дополнительную информацию о его структуре. На практике, подобные альтернативные формы представления макроструктуры алгоритма могут оказаться исключительно полезными для его эффективной реализации на различных вычислительных платформах.
 
  
 
=== Схема реализации последовательного алгоритма ===
 
=== Схема реализации последовательного алгоритма ===
Строка 45: Строка 43:
 
const std::vector<std::vector<double> > &g)
 
const std::vector<std::vector<double> > &g)
 
{
 
{
 +
//f and g are payoff matrices for first and second players respectively
 +
 
std::list<std::pair<int, int> > res;
 
std::list<std::pair<int, int> > res;
  
Строка 50: Строка 50:
 
int m = g[0].size();
 
int m = g[0].size();
  
 +
//find best response for first player for each fixed second player's strategy
 
std::vector<double> maxf(m);
 
std::vector<double> maxf(m);
 
for (int i = 0; i < m; ++i) {
 
for (int i = 0; i < m; ++i) {
Строка 58: Строка 59:
 
}
 
}
  
 +
 +
//and best response for second player
 
std::vector<double> maxg(n);
 
std::vector<double> maxg(n);
 
for (int i = 0; i < n; ++i) {
 
for (int i = 0; i < n; ++i) {
Строка 67: Строка 70:
  
  
 +
// consinering best responses for both player check each position if it's nash equilibrium
 
for (int i = 0; i < n; ++i) {
 
for (int i = 0; i < n; ++i) {
 
for (int j = 0; j < m; ++j) {
 
for (int j = 0; j < m; ++j) {
Строка 77: Строка 81:
 
return res;
 
return res;
 
}
 
}
 +
  
  
Строка 82: Строка 87:
  
 
=== Последовательная сложность алгоритма ===
 
=== Последовательная сложность алгоритма ===
Очевидно, сложность данного алгоритма будет <math> 2nm </math>
+
Сложность поиска максима во всех строках(стоблцах) в этих матрицах составит  <math> O(nm) </math>.
 +
после этого проверка каждого элемента на равновесие имеет сложность <math> O(1) </math>, а всех соответственно <math> O(nm) </math>.
  
 
=== Информационный граф ===
 
=== Информационный граф ===
Для начала был создан граф поиска максимума для каждого столбца матрицы F. надеюсь, аналогичный граф для поиска максимума в каждой строке графа G строить не придётся.
+
Для начала был создан граф поиска максимума для каждого столбца матрицы F. поиск максимума для каждой строки матрицы G делается аналогично.
  
  
Строка 91: Строка 97:
  
 
=== Ресурс параллелизма алгоритма ===
 
=== Ресурс параллелизма алгоритма ===
Здесь приводится оценка [[глоссарий#Параллельная сложность|''параллельной сложности'']] алгоритма: числа шагов, за которое можно выполнить данный алгоритм в предположении доступности неограниченного числа необходимых процессоров (функциональных устройств, вычислительных узлов, ядер и т.п.). Параллельная сложность алгоритма понимается как высота канонической ярусно-параллельной формы . Необходимо указать, в терминах каких операций дается оценка. Необходимо описать сбалансированность параллельных шагов по числу и типу операций, что определяется шириной ярусов канонической ярусно-параллельной формы и составом операций на ярусах.
+
Для нахождения максимума в каждой из <math> n </math> строк матрицы <math> F </math> понадобится <math> m - 1 </math> операция сравнения для вещественных чисел.
 
+
Аналогично, для нахождения максимума в каждом из <math> m </math> столбцов матрицы <math> G </math> понадобится <math> n - 1 </math> операция сравнения для вещественных чисел.
Параллелизм в алгоритме часто имеет естественную иерархическую структуру. Этот факт очень полезен на практике, и его необходимо отразить в описании. Как правило, подобная иерархическая структура параллелизма хорошо отражается в последовательной реализации алгоритма через циклический профиль результирующей программы (конечно же, с учетом графа вызовов), поэтому циклический профиль ([[#Описание схемы реализации последовательного алгоритма|п.1.5]]) вполне  может быть использован и для отражения ресурса параллелизма.
+
при неограниченном числе ресурсов, все строки  столбцы обрабатываются отдельно, поэтому сложность будет <math> max(m, n) </math>.
 
+
Далее, для определения каждой ситуации на равновесие нужно просто сравнить значение в <math> F </math> с максимумом в столбце и в <math> G </math> с максимумом в строке, т.е. для каждой ситуации это <math> O(1) </math>, а так как, для каждой ситуации это независимые действия, при неограниченном числе ресурсов все вычисления имеют сложность <math> O(1) </math>.
Для описания ресурса параллелизма алгоритма (ресурса параллелизма информационного графа) необходимо указать ключевые параллельные ветви в терминах [[глоссарий#Конечный параллелизм|''конечного'']] и [[глоссарий#Массовый параллелизм|''массового'']] параллелизма. Далеко не всегда ресурс параллелизма выражается просто, например, через [[глоссарий#Кооодинатный параллелизм|''координатный параллелизм'']] или, что то же самое, через независимость итераций некоторых циклов (да-да-да, циклы - это понятие, возникающее лишь на этапе реализации, но здесь все так связано… В данном случае, координатный параллелизм означает, что информационно независимые вершины лежат на гиперплоскостях, перпендикулярных одной из координатных осей). С этой точки зрения, не менее важен и ресурс [[глоссарий#Скошенный параллелизм|''скошенного параллелизма'']]. В отличие от координатного параллелизма, скошенный параллелизм намного сложнее использовать на практике, но знать о нем необходимо, поскольку иногда других вариантов и не остается: нужно оценить потенциал алгоритма, и лишь после этого, взвесив все альтернативы, принимать решение о конкретной параллельной реализации. Хорошей иллюстрацией может служить алгоритм, структура которого показана на рис.2: координатного параллелизма нет, но есть параллелизм скошенный, использование которого снижает сложность алгоритма с <math>n\times m</math> в последовательном случае до <math>(n+m-1)</math> в параллельном варианте.
 
 
 
Рассмотрим алгоритмы, последовательная сложность которых уже оценивалась в [[#Последовательная сложность алгоритма|п.1.6]]. Параллельная сложность алгоритма суммирования элементов вектора сдваиванием равна <math>\log_2n</math>, причем число операций на каждом ярусе убывает с <math>n/2</math> до <math>1</math>. Параллельная сложность быстрого преобразования Фурье (базовый алгоритм Кули-Тьюки) для векторов с длиной, равной степени двойки - <math>\log_2n</math>. Параллельная сложность базового алгоритма разложения Холецкого (точечный вариант для плотной симметричной и положительно-определенной матрицы) это <math>n</math> шагов для вычислений квадратного корня, <math>(n-1)</math> шагов для операций деления и <math>(n-1)</math> шагов для операций умножения и сложения.
 
  
 
=== Входные и выходные данные алгоритма ===
 
=== Входные и выходные данные алгоритма ===
Строка 106: Строка 109:
 
'''Выходные данные:'''
 
'''Выходные данные:'''
 
список пар <math> (i, j) </math>, где <math> i \in [1 .. n], j \in [1 .. m] </math>
 
список пар <math> (i, j) </math>, где <math> i \in [1 .. n], j \in [1 .. m] </math>
 +
 +
=== Свойства алгоритма ===
  
 
== Программная реализация алгоритма ==
 
== Программная реализация алгоритма ==
 +
 +
=== Особенности реализации последовательного алгоритма ===
 +
 +
=== Локальность данных и вычислений ===
 +
 +
=== Возможные способы и особенности параллельной реализации алгоритма ===
  
 
=== Масштабируемость алгоритма и его реализации ===
 
=== Масштабируемость алгоритма и его реализации ===
Задача данного раздела - показать пределы [[глоссарий#Масштабируемость|''масштабируемости'']] алгоритма на различных платформах. Очень важный раздел. Нужно выделить, описать и оценить влияние точек барьерной синхронизации, глобальных операций, операций сборки/разборки данных, привести оценки или провести исследование [[глоссарий#Сильная масштабируемость|''сильной'']] и [[глоссарий#Слабая масштабируемость|''слабой'']] масштабируемости алгоритма и его реализаций.
+
на графике показана зависимость времени работы программы от размеров матриц (в тестах они задавались квадратными) и от числа процессоров.
 +
диапазоны:
  
Масштабируемость алгоритма определяет свойства самого алгоритма безотносительно конкретных особенностей используемого компьютера. Она показывает, насколько параллельные свойства алгоритма позволяют использовать возможности растущего числа процессорных элементов. Масштабируемость параллельных программ определяется как относительно конкретного компьютера, так и относительно используемой технологии программирования, и в этом случае она показывает, насколько может вырасти реальная производительность данного компьютера на данной программе, записанной с помощью данной технологии программирования, при использовании бóльших вычислительных ресурсов (ядер, процессоров, вычислительных узлов).
+
'''число процессоров''': [1, 32]
  
Ключевой момент данного раздела заключается в том, чтобы показать ''реальные параметры масштабируемости программы'' для данного алгоритма на различных вычислительных платформах в зависимости от числа процессоров и размера задачи . При этом важно подобрать такое соотношение между числом процессоров и размером задачи, чтобы отразить все характерные точки в поведении параллельной программы, в частности, достижение максимальной производительности, а также тонкие эффекты, возникающие, например, из-за блочной структуры алгоритма или иерархии памяти.
+
'''сторона матриц''': числа от 100 до 24100 с шагом 1000
  
На рис.5. показана масштабируемость классического алгоритма умножения плотных матриц в зависимости от числа процессоров и размера задачи. На графике хорошо видны области с большей производительностью, отвечающие уровням кэш-памяти.
+
[[File:Plot.jpg|thumb|center|800px|Рис.1. график зависимости времени работы программы от числа процессоров и стороны матрицы]]
[[file:Масштабируемость перемножения матриц производительность.png|thumb|center|700px|Рис.5 Масштабируемость классического алгоритма умножения плотных матриц в зависимости от числа процессоров и размера задачи]]
 
  
 +
На графике видно, что в данных тестах процессы нагружаются оптимально, т.к. их увеличение приводит к сильному уменьшению времени. При данных параметрах можно считать, что время  обратно пропорцинально числу процессов.
 +
 +
=== Динамические характеристики и эффективность реализации алгоритма ===
 +
 +
=== Выводы для классов архитектур ===
  
 
=== Существующие реализации алгоритма ===
 
=== Существующие реализации алгоритма ===
Для многих пар алгоритм+компьютер уже созданы хорошие реализации, которыми можно и нужно пользоваться на практике. Данный раздел предназначен для того, чтобы дать ссылки на основные существующие последовательные и параллельные реализации алгоритма, доступные для использования уже сейчас. Указывается, является ли реализация коммерческой или свободной, под какой лицензией распространяется, приводится местоположение дистрибутива и имеющихся описаний. Если есть информация об особенностях, достоинствах и/или недостатках различных реализаций, то это также нужно здесь указать. Хорошими примерами реализации многих алгоритмов являются MKL, ScaLAPACK, PETSc, FFTW, ATLAS, Magma и другие подобные библиотеки.
+
Данный код реализует параллельную версию алгоритма
 +
 
 +
<source lang="C++">
 +
#include <iostream>
 +
#include <vector>
 +
#include <list>
 +
#include <algorithm>
 +
#include <mpi.h>
 +
 
 +
 
 +
using namespace std;
 +
 
 +
 
 +
vector<vector<double> >
 +
create_local_matrix(
 +
int n,
 +
int m,
 +
int n_proc,
 +
int rank)
 +
{
 +
int loc_n = rank < n % n_proc ? n / n_proc + 1 : n / n_proc;
 +
 
 +
vector<vector<double> > F(loc_n, vector<double>(m));
 +
for (auto &i: F) {
 +
for (auto &j: i) {
 +
j = rand() % 1000;
 +
}
 +
}
 +
 
 +
return F;
 +
}
 +
 
 +
vector<double>
 +
calc_max_in_rows(const vector<vector<double> > &G)
 +
{
 +
vector<double> G_max(G.size());
 +
for (int i = 0; i < G.size(); ++i) {
 +
G_max[i] = G[i][0];
 +
for (int j = 1; j < G[i].size(); ++j) {
 +
G_max[i] = max(G_max[i], G[i][j]);
 +
}
 +
}
 +
 
 +
return G_max;
 +
}
 +
 
 +
vector<double>
 +
calc_max_in_cols(const vector<vector<double> > &F)
 +
{
 +
vector<double> F_max(F[0].size());
 +
 
 +
for (int i = 0; i < F_max.size(); ++i) {
 +
F_max[i] = F[0][i];
 +
for (int j = 1; j < F.size(); ++j) {
 +
F_max[i] = max(F_max[i], F[j][i]);
 +
}
 +
}
 +
return F_max;
 +
}
 +
 
 +
 
 +
 
 +
int
 +
main(int argc, char *argv[])
 +
{
 +
int n_proc;
 +
int rank;
 +
int n, m;
 +
 
 +
 
 +
 
 +
MPI_Init(&argc, &argv);
 +
MPI_Comm_size(MPI_COMM_WORLD, &n_proc);
 +
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 +
 
 +
 
 +
 
 +
//reading and sending n and m;
 +
if (rank == 0) {
 +
// this is main process
 +
cin >> n >> m;
 +
if (n < m) {
 +
swap(n, m);
 +
}
 +
}
 +
 
 +
MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);
 +
MPI_Bcast(&m, 1, MPI_INT, 0, MPI_COMM_WORLD);
 +
 
 +
//Create and fill its part of matrices F and G
 +
srand(time(NULL));
 +
vector<vector<double> > F = create_local_matrix(n, m, n_proc, rank);
 +
vector<vector<double> > G = create_local_matrix(n, m, n_proc, rank);
 +
 
 +
//every process calculate max in every its rows of matrix G and columns of matrix F
 +
 
 +
int loc_n = rank < n % n_proc ? n / n_proc + 1 : n / n_proc;
 +
 
 +
//columns of F
 +
vector<double> loc_F_col_max = calc_max_in_cols(F);
 +
 
 +
//and rows of G
 +
vector<double> loc_G_row_max = calc_max_in_rows(G);
 +
 
 +
 
 +
//now we gather this local maximums in on common vector
 +
 
 +
vector<double> F_max(m);
 +
MPI_Allreduce(loc_F_col_max.data(), F_max.data(), m, MPI_DOUBLE, MPI_MAX, MPI_COMM_WORLD);
 +
 
 +
//find nash equilibriums
 +
 
 +
vector<pair<int, int> > loc_ans;
 +
 
 +
for (int i = 0; i < loc_n; ++i) {
 +
for (int j = 0; j < m; ++j) {
 +
if (F[i][j] == F_max[j] && G[i][j] == loc_G_row_max[i]) {
 +
loc_ans.push_back(make_pair(i, j));
 +
}
 +
}
 +
}
 +
 
 +
 
 +
MPI_Finalize();
 +
 
 +
}
 +
 
 +
</source>
  
 
= Литература =
 
= Литература =

Текущая версия на 17:19, 2 декабря 2017

Основные авторы описания: К.В.Телегин

1 Свойства и структура алгоритмов

1.1 Общее описание алгоритма

Данный алгоритм находит равновесия Нэша в игре двух лиц с конечным числом стратегий

1.2 Математическое описание алгоритма

Определим игру двух лиц. Пусть первый игрок имеет в своём распоряжении стратегии [math] x [/math] из множества стратегий [math] X [/math], а второй игрок стратегии [math] y [/math] из множества стратегий [math] Y [/math]. Будем рассматривать игру в нормальной форме. Это означает, что каждый из игроков выбирает стратегию, не зная выбора партнёра. Пару стратегий [math] (x, y) [/math] будем называть ситуацией. У первого игрока имеется функция выигрыша [math] F(x, y) [/math], а у второго [math] G(x, y) [/math], определённые на на множестве всех ситуаций [math] X × Y [/math]. каждый игрок стремится, по возможности, максимизировать свою функцию выигрыша. Таким образом, игра двух лиц в нормальной форме задаётся набором [math] \Gamma \langle X, Y, F(x, y), G(x, y) \rangle [/math]. Ситуация [math] (x^0, y^0) [/math] называется равновесием по Нэшу игры [math] \Gamma [/math] если: [math] \max_{x \in X} F(x, y^0) = F(x^0, y^0) \quad , \quad \max_{y \in Y} G(x^0, y) = G(x^0, y^0) [/math]

Иными словами, каждому из игроков невыгодно отколняться от ситуации равновесия.[1]

В данной статье мы рассмотрим нахождение ситуаций равновесий Нэша в одном специальном случае для множеств [math] X, Y [/math]. Назовём игру [math] \Gamma [/math] биматричной, если [math] X, Y [/math] - конечные множества. тогда можно считать, что [math] X = [1, ..., n], Y = [1, ..., m] [/math], а [math] F, G [/math] - являются матрицами [math] R^{n × m} [/math]

1.3 Вычислительное ядро алгоритма

Сначала будет естественно для каждого столбца матрицы [math] F [/math] найти максимум в нём (таким образом мы находим наилучший ответ 1-го игрока, при фиксированной стратегии 2-го) и для каждой строки матрицы [math] G [/math] найти максимум в ней (ищем наилучшие ответы 2-го игрока). Т.е. мы ищем для каждого из [math] m [/math] векторов [math] R^n [/math] мы ищем максимум и для каждого из [math] n [/math] векторов [math] R^m [/math] мы ищем максимум. После этого для каждой ситуации [math] (x^0, y^0) [/math] несложно понять, является ли она равновесием Нэша: нужно просто проверить, что [math] F(x^0, y^0) [/math] - максимальный элемент в [math] y^0 [/math]-м столбце матрицы [math] F [/math] и [math] G(x^0, y^0) [/math] - максимальный элемент в [math] x^0 [/math]-ой строке матрицы [math] G [/math].

1.4 Макроструктура алгоритма

Алгоритм в качестве подзадачи многократно использует поис максимума в массиве ([math] n [/math] раз в массиве длины [math] m [/math] и [math] m [/math] раз в массиве длины [math] n [/math]). Затем, для все возможных позиций проверяется, является она равноесием по нэшу, как это описывалось в разделе выше.

1.5 Схема реализации последовательного алгоритма

Данный код реализует последовательную версию алгоритма

#include <vector>
#include <algorithm>
#include <list>
#include <utility>


std::list<std::pair<int, int> > 
nash_equilibrium(
	const std::vector<std::vector<double> > &f,
	const std::vector<std::vector<double> > &g)
{
	//f and g are payoff matrices for first and second players respectively

	std::list<std::pair<int, int> > res;

	int n = f.size();
	int m = g[0].size();

	//find best response for first player for each fixed second player's strategy
	std::vector<double> maxf(m);
	for (int i = 0; i < m; ++i) {
		maxf[i] = f[0][i];
		for (int j = 1; j < n; ++j) {
			maxf[i] = std::max(maxf[i], f[j][i]);
		}
	}


	//and best response for second player
	std::vector<double> maxg(n);
	for (int i = 0; i < n; ++i) {
		maxg[i] = g[i][0];
		for (int j = 1; j < m; ++j) {
			maxg[i] = std::max(maxg[i], g[i][j]);
		}
	}


	// consinering best responses for both player check each position if it's nash equilibrium
	for (int i = 0; i < n; ++i) {
		for (int j = 0; j < m; ++j) {
			if (f[i][j] == maxf[j] && g[i][j] == maxg[i]) {
				res.emplace_back(i, j);
			}
		}
	}

	return res;
}

1.6 Последовательная сложность алгоритма

Сложность поиска максима во всех строках(стоблцах) в этих матрицах составит [math] O(nm) [/math]. после этого проверка каждого элемента на равновесие имеет сложность [math] O(1) [/math], а всех соответственно [math] O(nm) [/math].

1.7 Информационный граф

Для начала был создан граф поиска максимума для каждого столбца матрицы F. поиск максимума для каждой строки матрицы G делается аналогично.


Рис.1. поиск максимума для каждого столбца матрицы F

1.8 Ресурс параллелизма алгоритма

Для нахождения максимума в каждой из [math] n [/math] строк матрицы [math] F [/math] понадобится [math] m - 1 [/math] операция сравнения для вещественных чисел. Аналогично, для нахождения максимума в каждом из [math] m [/math] столбцов матрицы [math] G [/math] понадобится [math] n - 1 [/math] операция сравнения для вещественных чисел. при неограниченном числе ресурсов, все строки столбцы обрабатываются отдельно, поэтому сложность будет [math] max(m, n) [/math]. Далее, для определения каждой ситуации на равновесие нужно просто сравнить значение в [math] F [/math] с максимумом в столбце и в [math] G [/math] с максимумом в строке, т.е. для каждой ситуации это [math] O(1) [/math], а так как, для каждой ситуации это независимые действия, при неограниченном числе ресурсов все вычисления имеют сложность [math] O(1) [/math].

1.9 Входные и выходные данные алгоритма

Входные данные: две матрицы [math] R^{n × m} [/math]

Выходные данные: список пар [math] (i, j) [/math], где [math] i \in [1 .. n], j \in [1 .. m] [/math]

1.10 Свойства алгоритма

2 Программная реализация алгоритма

2.1 Особенности реализации последовательного алгоритма

2.2 Локальность данных и вычислений

2.3 Возможные способы и особенности параллельной реализации алгоритма

2.4 Масштабируемость алгоритма и его реализации

на графике показана зависимость времени работы программы от размеров матриц (в тестах они задавались квадратными) и от числа процессоров. диапазоны:

число процессоров: [1, 32]

сторона матриц: числа от 100 до 24100 с шагом 1000

Рис.1. график зависимости времени работы программы от числа процессоров и стороны матрицы

На графике видно, что в данных тестах процессы нагружаются оптимально, т.к. их увеличение приводит к сильному уменьшению времени. При данных параметрах можно считать, что время обратно пропорцинально числу процессов.

2.5 Динамические характеристики и эффективность реализации алгоритма

2.6 Выводы для классов архитектур

2.7 Существующие реализации алгоритма

Данный код реализует параллельную версию алгоритма

#include <iostream>
#include <vector>
#include <list>
#include <algorithm>
#include <mpi.h>


using namespace std;


vector<vector<double> >
create_local_matrix(
	int n, 
	int m,
	int n_proc,
	int rank)
{
	int loc_n = rank < n % n_proc ? n / n_proc + 1 : n / n_proc;

	vector<vector<double> > F(loc_n, vector<double>(m));
	for (auto &i: F) {
		for (auto &j: i) {
			j = rand() % 1000;
		}
	}	

	return F;
}

vector<double> 
calc_max_in_rows(const vector<vector<double> > &G)
{
	vector<double> G_max(G.size());
	for (int i = 0; i < G.size(); ++i) {
		G_max[i] = G[i][0];
		for (int j = 1; j < G[i].size(); ++j) {
			G_max[i] = max(G_max[i], G[i][j]);
		}
	}

	return G_max;
}

vector<double>
calc_max_in_cols(const vector<vector<double> > &F)
{
	vector<double> F_max(F[0].size());

	for (int i = 0; i < F_max.size(); ++i) {
		F_max[i] = F[0][i];
		for (int j = 1; j < F.size(); ++j) {
			F_max[i] = max(F_max[i], F[j][i]);
		}
	}
	return F_max;
}



int
main(int argc, char *argv[])
{
	int n_proc;
	int rank;
	int n, m;



	MPI_Init(&argc, &argv);
	MPI_Comm_size(MPI_COMM_WORLD, &n_proc);
	MPI_Comm_rank(MPI_COMM_WORLD, &rank);



//reading and sending n and m;
	if (rank == 0) {
		// this is main process
		cin >> n >> m;
		if (n < m) {
			swap(n, m);
		}
	}

	MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);
	MPI_Bcast(&m, 1, MPI_INT, 0, MPI_COMM_WORLD);

//Create and fill its part of matrices F and G
	srand(time(NULL));
	vector<vector<double> > F = create_local_matrix(n, m, n_proc, rank);
	vector<vector<double> > G = create_local_matrix(n, m, n_proc, rank);

//every process calculate max in every its rows of matrix G and columns of matrix F

	int loc_n = rank < n % n_proc ? n / n_proc + 1 : n / n_proc;

	//columns of F
	vector<double> loc_F_col_max = calc_max_in_cols(F);

	//and rows of G
	vector<double> loc_G_row_max = calc_max_in_rows(G);


//now we gather this local maximums in on common vector

	vector<double> F_max(m);
	MPI_Allreduce(loc_F_col_max.data(), F_max.data(), m, MPI_DOUBLE, MPI_MAX, MPI_COMM_WORLD);

//find nash equilibriums

	vector<pair<int, int> > loc_ans;

	for (int i = 0; i < loc_n; ++i) {
		for (int j = 0; j < m; ++j) {
			if (F[i][j] == F_max[j] && G[i][j] == loc_G_row_max[i]) {
				loc_ans.push_back(make_pair(i, j));
			}
		}
	}


	MPI_Finalize();

}

3 Литература

  1. Васин А.А., Морозов В.В. "Введение в теорию игр с приложениями в экономике"(учебное пособие). - М.: 2003. - 278 с. Pages 91-92