Алгоритм GHS: различия между версиями
Перейти к навигации
Перейти к поиску
[выверенная версия] | [досмотренная версия] |
ASA (обсуждение | вклад) |
ASA (обсуждение | вклад) |
||
(не показана 1 промежуточная версия этого же участника) | |||
Строка 18: | Строка 18: | ||
== Программная реализация алгоритма == | == Программная реализация алгоритма == | ||
=== Особенности реализации последовательного алгоритма === | === Особенности реализации последовательного алгоритма === | ||
− | |||
− | |||
− | |||
− | |||
=== Возможные способы и особенности параллельной реализации алгоритма === | === Возможные способы и особенности параллельной реализации алгоритма === | ||
− | === | + | === Результаты прогонов === |
− | |||
− | |||
− | |||
=== Выводы для классов архитектур === | === Выводы для классов архитектур === | ||
− | |||
== Литература == | == Литература == | ||
+ | |||
<references /> | <references /> | ||
[[Категория:Начатые статьи]] | [[Категория:Начатые статьи]] | ||
+ | |||
+ | [[en:GHS algorithm]] |
Текущая версия на 10:23, 7 июля 2022
Содержание
- 1 Свойства и структура алгоритма
- 1.1 Общее описание алгоритма
- 1.2 Математическое описание алгоритма
- 1.3 Вычислительное ядро алгоритма
- 1.4 Макроструктура алгоритма
- 1.5 Схема реализации последовательного алгоритма
- 1.6 Последовательная сложность алгоритма
- 1.7 Информационный граф
- 1.8 Ресурс параллелизма алгоритма
- 1.9 Входные и выходные данные алгоритма
- 1.10 Свойства алгоритма
- 2 Программная реализация алгоритма
- 3 Литература
1 Свойства и структура алгоритма
1.1 Общее описание алгоритма
Алгоритм GHS (сокр. от фамилий авторов: Gallager, Humblet, Spira)[1] предназначен для распределённого построения минимального остовного дерева во взвешенном неориентированном графе. Алгоритм GHS основан на алгоритме Борувки, адаптированном для применения в распределённой среде. Известны модификации алгоритма, улучшающие среднее и наихудшее время работы[2][3][4][5].
1.2 Математическое описание алгоритма
1.3 Вычислительное ядро алгоритма
1.4 Макроструктура алгоритма
1.5 Схема реализации последовательного алгоритма
1.6 Последовательная сложность алгоритма
1.7 Информационный граф
1.8 Ресурс параллелизма алгоритма
1.9 Входные и выходные данные алгоритма
1.10 Свойства алгоритма
2 Программная реализация алгоритма
2.1 Особенности реализации последовательного алгоритма
2.2 Возможные способы и особенности параллельной реализации алгоритма
2.3 Результаты прогонов
2.4 Выводы для классов архитектур
3 Литература
- ↑ Gallager, Robert G, P A Humblet, and P M Spira. “A Distributed Algorithm for Minimum-Weight Spanning Trees.” ACM Transactions on Programming Languages and Systems 5, no. 1 (1983): 66–77. doi:10.1145/357195.357200.
- ↑ Gafni, Eli. “Improvements in the Time Complexity of Two Message-Optimal Election Algorithms,” 175–85, New York, New York, USA: ACM Press, 1985. doi:10.1145/323596.323612.
- ↑ Awerbuch, B. “Optimal Distributed Algorithms for Minimum Weight Spanning Tree, Counting, Leader Election, and Related Problems,” 230–40, New York, New York, USA: ACM Press, 1987. doi:10.1145/28395.28421.
- ↑ Garay, Juan A, Shay Kutten, and David Peleg. “A SubLinear Time Distributed Algorithm for Minimum-Weight Spanning Trees.” SIAM Journal on Computing 27, no. 1 (February 1998): 302–16. doi:10.1137/S0097539794261118.
- ↑ Faloutsos, Michalis, and Mart Molle. “A Linear-Time Optimal-Message Distributed Algorithm for Minimum Spanning Trees.” Distributed Computing 17, no. 2 (August 2004). doi:10.1007/s00446-004-0107-2.