Участник:Kozlov Vladimir/Алгоритм Ланцоша для арифметики с плавающей точкой с полной переортогонализацией: различия между версиями
Строка 30: | Строка 30: | ||
<math> | <math> | ||
\begin{array}{l} | \begin{array}{l} | ||
− | q_1 = b / \Vert b \Vert_2, \beta_0 | + | q_1 = b / \Vert b \Vert_2, \beta_0 = 0\\ |
j = \overline{1, k}:\\ | j = \overline{1, k}:\\ | ||
\quad z_j = A q_j \\ | \quad z_j = A q_j \\ |
Версия 18:34, 15 октября 2016
Содержание
- 1 Свойства и структура алгоритма
- 1.1 Общее описание алгоритма
- 1.2 Математическое описание алгоритма
- 1.3 Вычислительное ядро алгоритма
- 1.4 Макроструктура алгоритма
- 1.5 Схема реализации последовательного алгоритма
- 1.6 Последовательная сложность алгоритма
- 1.7 Информационный граф
- 1.8 Ресурс параллелизма алгоритма
- 1.9 Входные и выходные данные алгоритма
- 1.10 Свойства алгоритма
- 2 Программная реализация алгоритма
- 3 Литература
1 Свойства и структура алгоритма
1.1 Общее описание алгоритма
Алгоритм Ланцоша — это итерационный алгоритм поиска k приближённых собственных значений симметричной вещественной матрицы A размера n \times n. Алгоритм применяется, когда матрица A слишком велика, чтобы к ней можно было применять точные прямые методы вычисления собственных значений. Алгоритм метод Рэлея — Ритца поиска приближённых собственных значений и метод Ланцоша построения крыловского подпространства.
Метод Рэлея — Ритца является методом поиска k приближённых собственных значений симметричной вещественной матрицы A размера n \times n. Если Q = [Q_k, Q_u] — ортонормированная матрица размера n \times n, Q_k имеет размер n \times k, Q_u имеет размер n \times n - k, то можно записать равенство
T = Q^T A Q = [Q_k, Q_u]^T A [Q_k, Q_u] = \left[ \begin{array}{cc} Q_k^T A Q_k & Q_k^T A Q_u\\ Q_u^T A Q_k & Q_u^T A Q_u \end{array} \right] = \left[ \begin{array}{cc} T_{k} & T_{ku}^T\\ T_{ku} & T_{u} \end{array} \right].
Метод Рэлея — Ритца заключается в том, что собственные значения матрицы T_k = Q_k^T A Q_k объявляются приближёнными собственными значениями матрицы A. Такое приближение является в некотором смысле «наилучшим»: можно показать, что если T_k = V \Lambda V^{-1} — спектральное разложение T_k, то пара (Q_k V, \Lambda) минимизирует функционал L(P_k, D) = \Vert A P_k - P_k D \Vert_2, причём L(Q_k V, \Lambda) = \Vert T_{ku} \Vert_2, то есть A \approx (Q_k V) \Lambda (Q_k V)^{-1}. Из этого также видно, что метод Рэлея — Ритца позволяет получать приближения для собственных векторов матрицы A. Более того, можно показать, что собственные значения T отличаются от некоторых собственных значений A не более чем на \Vert T_{ku} \Vert_2.
Метод Ланцоша — это метод построения матрицы Q, при использовании которого, во-первых, матрица T оказывается симметричной трёхдиагональной, во-вторых, столбцы Q и T вычисляются последовательно. Трёхдиагональность T приводит к следующим явлениям:
- матрица T_k является трёхдиагональной матрицей меньшей размерности, а для трёхдиагональных матриц существуют высокоэффективные методы поиска собственных значений;
- матрица T_{ku} имеет только один ненулевой (возможно) элемент — правый верхний, а значит, для оценки погрешности полученных собственных значений достаточно знать только этот элемент.
В теории в методе Ланцоша для вычисления каждого следующего столбца q_{j + 1} матрицы Q достаточно знать только q_{j - 1} и q_{j} в силу трёхдиагональности матрицы T. На практике из-за ошибок округления, если не предпринимать специальных мер, набор векторов q_{1}, \dots, q_{k} перестаёт быть ортогональным. Для борьбы с этим явлением на каждом шаге метода Ланцоша приходится выполнять так называемую переортогонализацию — повторно запускать процесс ортогонализации Грама — Шмидта.
1.2 Математическое описание алгоритма
Исходные данные: симметрическая матрица A — матрица, для которой будут вычисляться собственные значения, вектор b — начальное приближение для метода Ланцоша.
Формулы метода:
\begin{array}{l} q_1 = b / \Vert b \Vert_2, \beta_0 = 0\\ j = \overline{1, k}:\\ \quad z_j = A q_j \\ \quad \alpha_j = q_j^T A q_j = q_j^T z_j \\ \quad z_j' = z_j - \sum_{i=1}^j (z_j^T q_i) q_i \\ \quad z_j'' = z_j' - \sum_{i=1}^j (z_j'^T q_i) q_i\\ \quad \beta_j = \Vert z_j'' \Vert_2\\ \quad q_{j+1} = z_j'' / \Vert z_j'' \Vert_2 = z_j''/\beta_j \end{array}
Вычисление z_j', z_j'' — это полная переортогонализация z_j методом Грама — Шмидта. Двойной запуск практически гарантирует, что z_j'' будет ортогонален q_1, \dots, q_j.