Уровень алгоритма

Участник:Маркова Екатерина/Построение матрицы Адамара: различия между версиями

Материал из Алговики
Перейти к навигации Перейти к поиску
Строка 1: Строка 1:
 
{{algorithm
 
{{algorithm
 
| name              = Построение матрицы Адамара
 
| name              = Построение матрицы Адамара
| serial_complexity = <math>O(n^2)</math>
+
| serial_complexity = <math>O(N^2)</math>
 
| pf_height        = <math></math>
 
| pf_height        = <math></math>
 
| pf_width          = <math></math>
 
| pf_width          = <math></math>
 
| input_data        = <math>1</math>
 
| input_data        = <math>1</math>
| output_data      = <math>n^2</math>
+
| output_data      = <math>N^2</math>
 
}}
 
}}
 
Основной автор статьи: Маркова Е.А. 615 гр.
 
Основной автор статьи: Маркова Е.А. 615 гр.

Версия 16:53, 28 октября 2016


Построение матрицы Адамара
Последовательный алгоритм
Последовательная сложность [math]O(N^2)[/math]
Объём входных данных [math]1[/math]
Объём выходных данных [math]N^2[/math]
Параллельный алгоритм
Высота ярусно-параллельной формы [math][/math]
Ширина ярусно-параллельной формы [math][/math]

Основной автор статьи: Маркова Е.А. 615 гр.

1 Свойства и структура алгоритма

1.1 Общее описание алгоритма

Матрица Адамара [math]H[/math] - это квадратная матрица размера [math]N\times N[/math], составленная из чисел [math]1[/math] и [math]-1[/math], столбцы которой ортогональны, так что справедливо соотношение:

[math]H*H^T = N*E_N[/math],

где [math]E_N[/math] - это единичная матрица размера [math]N[/math]. Матрицы Адамара применяются в различных областях, включая комбинаторику, численный анализ, обработку сигналов.

1.2 Математическое описание алгоритма

Пусть [math]H_m[/math] [math]-[/math] матрица Адамара порядка [math]2^m[/math] и [math]-H_m[/math] [math]-[/math] матрица с противоположными элементами. Тогда матрица [math]H_{2m}[/math] получается следующим образом: [math]H_{2m} = \begin{bmatrix} H_m & H_m \\ H_m & -H_m \end{bmatrix} [/math]

Данным алгоритм описывает получение матриц Адамара только порядка степени 2, то есть [math]m[/math] и [math]N[/math] связаны соотношением [math]N = 2^m[/math].

Получение матрицы порядка [math]N[/math] состоит из следующих [math]m[/math] шагов:

Шаг 1: [math]H_1 = (1);[/math]

Шаг 2: [math]H_2 = \begin{pmatrix} 1 & 1 \\1 & -1 \end{pmatrix}; [/math]

Шаг 3: [math]H_3 = \begin{pmatrix} 1 & 1 & 1 & 1 \\1 & -1 & 1 & -1 \\1 & 1 &- 1 & -1 \\1 & -1 & -1 & 1 \end{pmatrix}. [/math]

...

Шаг [math]m[/math]: искомая матрица [math]H_m[/math].

1.3 Вычислительное ядро алгоритма

Вычислительное ядро рекурсивного алгоритма состоит из [math]\;N^2\;[/math] присвоений значений матрицы Адамара

[math]H_{1,1} = 1[/math];

[math]H_{ij} = H_{i(j - \frac{N}{2})}[/math], где [math]i = 1..\frac{N}{2}[/math], [math]j = \frac{N}{2}+1..N[/math];

[math]H_{ij} = H_{(i-\frac{N}{2})j}[/math], где [math]i = \frac{N}{2}+1..N[/math], [math]j = 1.. \frac{N}{2}[/math];

[math]H_{ij} = H_{(i-\frac{N}{2})(j-\frac{N}{2})}[/math], где [math]i = \frac{N}{2}+1..N [/math], [math]j = \frac{N}{2}+1..N[/math].

1.4 Макроструктура алгоритма

Алгоритм не использует в качестве составных частей другие алгоритмы. Как это было описано в вычислительном ядре, в пустые блоки дублируются со сменой или без смены знака значения первого блока матрицы.

1.5 Схема реализации последовательного алгоритма

В описанном виде алгоритм представляет из себя примитивное дублирование элементов матрицы, полученной на предыдущем этапе, в пустующие блоки новой матрицы.

Сначала заполняется правый верхний блок матрицы [math]H[/math]

[math]H_{ij} = H_{i(j - \frac{N}{2})}[/math], где [math]i = 1..\frac{N}{2}[/math], [math]j = \frac{N}{2}+1..N[/math];

затем левый нижний блок

[math]H_{ij} = H_{(i-\frac{N}{2})j}[/math], где [math]i = \frac{N}{2}+1..N[/math], [math]j = 1.. \frac{N}{2}[/math].

Последним заполняется нижний правый блок матрицы

[math]H_{ij} = H_{(i-\frac{N}{2})(j-\frac{N}{2})}[/math], где [math]i = \frac{N}{2}+1..N [/math], [math]j = \frac{N}{2}+1..N[/math].


1.6 Последовательная сложность алгоритма

Для заполнения матрицы [math]H[/math] размера [math]N\times N[/math] необходимо [math]\;N^2\;[/math] присвоений значений. Из чего можно сделать вывод, что рекурсивный метод построения матрицы Адамара является алгоритмом с квадратичной сложностью.

1.7 Информационный граф

Зависимость данных для матрицы размерностью [math]4*4[/math] можно увидеть на рис.1.

Some text

1.8 Ресурс параллелизма алгоритма

Логически алгоритм можно разделить на три части, которые на каждом шаге выполняются независимо. Внутри каждой части происходит [math]2^{2N}-2^{2(N-1)}[/math] независимых присвоений, где [math]N[/math] - номер шага алгоритма, причем размерность матрицы на шаге [math]N[/math] равна [math]2^N[/math]. При этом необходимо ждать завершения предыдущего шага, то есть необходимы синхронизирующие блокировки.

1.9 Входные и выходные данные алгоритма

Входные данные: [math]N[/math] - размерность матрицы.

Объем входных данных: 1.

Выходные данные: матрица размером [math]N\times N[/math].

Объем выходных данных: [math] N^2[/math].

1.10 Свойства алгоритма

Алгоритм полностью детерминирован.

2 Программная реализация алгоритма

2.1 Особенности реализации последовательного алгоритма

2.2 Локальность данных и вычислений

2.3 Возможные способы и особенности параллельной реализации алгоритма

2.4 Масштабируемость алгоритма и его реализации

2.5 Динамические характеристики и эффективность реализации алгоритма

2.6 Выводы для классов архитектур

2.7 Существующие реализации алгоритма

Реализация MATLAB

Реализация PYTHON

Реализация WOLFRAM

На языке Java реализован класс Hadamard не входящий в стандарт языка. С кодом можно ознакомиться по ссылке.

3 Литература

1. Мак-Вильямс Ф., Слоэн Н. — "Теория кодов, исправляющих ошибки" (1979)

2. Кронберг, Ю.И. Ожигов, А.Ю. Чернявский — "Алгебраический аппарат квантовой информатики 2"

3. М. Н. Аршинов, Л. Е. Садовский — "Коды и математика" (1983)