Нахождение частных сумм элементов массива сдваиванием: различия между версиями
[непроверенная версия] | [непроверенная версия] |
Frolov (обсуждение | вклад) |
Frolov (обсуждение | вклад) |
||
Строка 28: | Строка 28: | ||
=== Описание схемы реализации последовательного алгоритма === | === Описание схемы реализации последовательного алгоритма === | ||
− | В | + | В описанном виде суммирование сдваиванием не используют при последовательной реализации, поскольку кроме усложнения общей схемы алгоритма и резкого роста потребности в памяти, нужной для хранения промежуточных данных, сам по себе алгоритм содержит подавляющее большинство [[%D0%93%D0%BB%D0%BE%D1%81%D1%81%D0%B0%D1%80%D0%B8%D0%B9#.D0.98.D0.B7.D0.B1.D1.8B.D1.82.D0.BE.D1.87.D0.BD.D1.8B.D0.B5_.D0.B2.D1.8B.D1.87.D0.B8.D1.81.D0.BB.D0.B5.D0.BD.D0.B8.D1.8F|избыточных вычислений]]: по сравнению с последовательным алгоритмом нахождения частных сумм количество операций больше в <math>\frac{1}{2} log_2 n</math> раз. |
=== Последовательная сложность алгоритма === | === Последовательная сложность алгоритма === | ||
− | Для вычисления суммы массива, состоящего из <math> | + | Для вычисления суммы массива, состоящего из <math>n</math> элементов, количество операций равно <math>\frac{n}{2} log_2 n</math>. Поэтому алгоритм должен быть отнесён к алгоритмам ''линейно-логарифмической сложности'' по количеству последовательных операций. |
=== Информационный граф === | === Информационный граф === | ||
− | |||
− | |||
− | |||
=== Описание ресурса параллелизма алгоритма === | === Описание ресурса параллелизма алгоритма === | ||
− | Для | + | Для вычисления частичных сумм массива порядка <math>n</math> методом сдваивания в параллельном варианте требуется последовательно выполнить <math>\lceil \log_2 n \rceil</math> ярусов с одинаковым (<math>\frac{n}{2}</math>) количеством операций суммирования. |
При классификации по высоте ЯПФ, таким образом, метод сдваивания относится к алгоритмам с ''логарифмической сложностью''. При классификации по ширине ЯПФ его сложность будет ''линейной''. | При классификации по высоте ЯПФ, таким образом, метод сдваивания относится к алгоритмам с ''логарифмической сложностью''. При классификации по ширине ЯПФ его сложность будет ''линейной''. | ||
Строка 50: | Строка 47: | ||
Дополнительные ограничения: отсутствуют. | Дополнительные ограничения: отсутствуют. | ||
− | Объём входных данных: <nowiki/><math> | + | Объём входных данных: <nowiki/><math>n</math>. |
− | Выходные данные: | + | Выходные данные: все частичные суммы первых <math>i</math> элементов массива, где <math>i</math> принимает все значения от <math>1</math> до <math>n</math>. |
− | Объём выходных данных: | + | Объём выходных данных: <math>n</math>. |
=== Свойства алгоритма === | === Свойства алгоритма === | ||
− | Соотношение последовательной и параллельной сложности в случае неограниченных ресурсов, как хорошо видно, является <math>\frac{n}{ | + | Соотношение последовательной и параллельной сложности в случае неограниченных ресурсов, как хорошо видно, является <math>\frac{n}{2}</math> (отношение линейно-логарифмической к логарифмической). При этом вычислительная мощность алгоритма, как отношение числа операций к суммарному объему входных и выходных данных — логарифмическая :<math>\frac{1}{2} log_2 n</math>. Это, однако обусловлено избыточностью вычислений. При этом алгоритм полностью детерминирован. Дуги информационного графа нелокальны, от яруса к ярусу наблюдается показательный рост их длины, при любом размещении вершин графа. |
== Программная реализация == | == Программная реализация == |
Версия 16:17, 6 апреля 2015
Основные авторы описания: А.В.Фролов
Содержание
- 1 Описание свойств и структуры алгоритма
- 1.1 Общее описание алгоритма
- 1.2 Математическое описание
- 1.3 Вычислительное ядро алгоритма
- 1.4 Макроструктура алгоритма
- 1.5 Описание схемы реализации последовательного алгоритма
- 1.6 Последовательная сложность алгоритма
- 1.7 Информационный граф
- 1.8 Описание ресурса параллелизма алгоритма
- 1.9 Описание входных и выходных данных
- 1.10 Свойства алгоритма
- 2 Программная реализация
- 2.1 Особенности реализации последовательного алгоритма
- 2.2 Описание локальности данных и вычислений
- 2.3 Возможные способы и особенности реализации параллельного алгоритма
- 2.4 Масштабируемость алгоритма и его реализации
- 2.5 Динамические характеристики и эффективность реализации алгоритма
- 2.6 Выводы для классов архитектур
- 2.7 Существующие реализации алгоритма
1 Описание свойств и структуры алгоритма
1.1 Общее описание алгоритма
Метод сдваивания используется в качестве быстрого варианта вычисления длинных последовательностей ассоциативных операций (например, массового получения частичных сумм). Получил распространение благодаря наименьшей из возможных высоте алгоритма.
1.2 Математическое описание
Исходные данные: одномерный массив [math]n[/math] чисел.
Вычисляемые данные: частичные суммы первых [math]i[/math] элементов массива, где [math]i[/math] принимает все значения от [math]1[/math] до [math]n[/math].
Формулы метода: элементы на первом этапе алгоритма разбиваются на пары. В каждой из пар находится сумма составляющих её соседних элементов. На следующем этапе на пары разбиваются уже эти суммы (и те элементы, которые не вошли в уже вычисленные суммы), и т. д. По нахождению тех частных сумм, где [math]i[/math] является степенью двойки, формулы повторяют Нахождение суммы элементов массива сдваиванием. Однако, кроме этого, для каждой пары (например, для нахождения суммы [math]x_i+...+x_{i+k}[/math] и [math]x_{i+k+1} +...+ x_{i+2k}[/math])дополнительно вычисляются все частные суммы от [math]x_i+...+x_{i+k+1}[/math] до [math]x_i+...+x_{i+2k-1}[/math].
1.3 Вычислительное ядро алгоритма
Вычислительное ядро последовательно-параллельного метода суммирования можно составить из элементарных бинарных (всего [math]\frac{n}{2} log_2 n[/math]) вычислений сумм.
1.4 Макроструктура алгоритма
Как уже записано в описании ядра алгоритма, основную часть метода составляют элементарные бинарные (всего [math]\frac{n}{2} log_2 n[/math]) вычисления сумм.
1.5 Описание схемы реализации последовательного алгоритма
В описанном виде суммирование сдваиванием не используют при последовательной реализации, поскольку кроме усложнения общей схемы алгоритма и резкого роста потребности в памяти, нужной для хранения промежуточных данных, сам по себе алгоритм содержит подавляющее большинство избыточных вычислений: по сравнению с последовательным алгоритмом нахождения частных сумм количество операций больше в [math]\frac{1}{2} log_2 n[/math] раз.
1.6 Последовательная сложность алгоритма
Для вычисления суммы массива, состоящего из [math]n[/math] элементов, количество операций равно [math]\frac{n}{2} log_2 n[/math]. Поэтому алгоритм должен быть отнесён к алгоритмам линейно-логарифмической сложности по количеству последовательных операций.
1.7 Информационный граф
1.8 Описание ресурса параллелизма алгоритма
Для вычисления частичных сумм массива порядка [math]n[/math] методом сдваивания в параллельном варианте требуется последовательно выполнить [math]\lceil \log_2 n \rceil[/math] ярусов с одинаковым ([math]\frac{n}{2}[/math]) количеством операций суммирования. При классификации по высоте ЯПФ, таким образом, метод сдваивания относится к алгоритмам с логарифмической сложностью. При классификации по ширине ЯПФ его сложность будет линейной.
1.9 Описание входных и выходных данных
Входные данные: массив [math]x[/math] (элементы [math]x_i[/math]).
Дополнительные ограничения: отсутствуют.
Объём входных данных: [math]n[/math].
Выходные данные: все частичные суммы первых [math]i[/math] элементов массива, где [math]i[/math] принимает все значения от [math]1[/math] до [math]n[/math].
Объём выходных данных: [math]n[/math].
1.10 Свойства алгоритма
Соотношение последовательной и параллельной сложности в случае неограниченных ресурсов, как хорошо видно, является [math]\frac{n}{2}[/math] (отношение линейно-логарифмической к логарифмической). При этом вычислительная мощность алгоритма, как отношение числа операций к суммарному объему входных и выходных данных — логарифмическая :[math]\frac{1}{2} log_2 n[/math]. Это, однако обусловлено избыточностью вычислений. При этом алгоритм полностью детерминирован. Дуги информационного графа нелокальны, от яруса к ярусу наблюдается показательный рост их длины, при любом размещении вершин графа.