Уровень алгоритма

Участник:Yastrebovks/Алгоритм Ланцоша с полной переортогонализацией: различия между версиями

Материал из Алговики
Перейти к навигации Перейти к поиску
Строка 52: Строка 52:
  
 
=== Схема реализации последовательного алгоритма ===
 
=== Схема реализации последовательного алгоритма ===
Input: A, b (random vector with unit norm)
+
<math>
: <math>
+
\begin{array}{l}
 +
\mathtt{input:}\; A, b, k\\
 +
q_1 = b / \Vert b \Vert_2\\
 +
Q = q_1\\
 +
\mathtt{for}\; j = \overline{1, k}:\\
 +
\quad z = A q_j \\
 +
\quad \alpha_j = q_j^T z \\
 +
\quad z = z - Q \left( Q^T z \right) \\
 +
\quad z = z - Q \left( Q^T z \right)\\
 +
\quad \beta_j = \Vert z \Vert_2\\
 +
\quad \mathtt{if }\; \beta_j = 0\\
 +
\quad \quad \mathtt{exit}\\
 +
\quad \mathtt{end \; if}\\
 +
\quad q_{j+1} =  z/\beta_j\\
 +
\quad Q = [Q, q_{j + 1}]\\
 +
\mathtt{end \; for}\\
 +
\mathtt{output:}\; [\alpha_1, \dots, \alpha_k], [\beta_1, \dots, \beta_{k - 1}], [q_1, \dots, q_k].
 +
\end{array}
 +
</math>
  
\begin{align}
+
Кроме того, заметим, что очень часто в макрооперациях возникает операция вычисления суммы всех элементов массива. Её необходимо выполнять и при умножении матрицы на вектор, и при вычислении скалярного произведения, и при вычислении нормы вектора. Разные методы суммирования дают разный ресурс параллелизма. В этой работе предполагается, что везде для суммирования используется последовательный способ.
q_1 = b/||b||_2, \beta_0 = 0, q_0 = 0 \\
 
j = 1 ,...,k \\
 
q_1&=b/||b||,\beta_0=0,q_o=0. \\
 
z&=Aq_j, \\
 
\alpha_j&=q_j^Tz, \\
 
z&=z-\alpha_jq_j-\beta_{j-1}q_{j-1}, \\
 
\beta&=||z||,\\
 
q_{j+1}&=z/\beta_j, \quad j \in [1, k].
 
 
 
 
 
\end{align}
 
 
 
</math>
 
  
 
=== Последовательная сложность алгоритма ===
 
=== Последовательная сложность алгоритма ===

Версия 00:29, 5 декабря 2016


Алгоритм Ланцоша с полной переортогонализацией
Последовательный алгоритм
Последовательная сложность [math]O(n^2)+O(nk^2) [/math]
Объём входных данных [math]\frac{n(n + 1)}{2}[/math]
Объём выходных данных [math]k(n + 1)[/math]


Авторы: Алексейчук Н.Н 616, Ястребов К.С. 609. Авторы внесли равнозначный вклад в каждый из разделов данной статьи.

1 Свойства и структура алгоритма

1.1 Общее описание алгоритма.

Алгоритм Ланцоша ищет собвственные значения и собственные векторы для симетричной матрицы A вещественных чисел. Является итерацонным алгоритмом. Алгоритм Ланцоша использует степенной метод ([math] b_{k+1} = \frac{Ab_k}{||Ab_k||} [/math]) для поиска наибольших собственных значений и векторов матриц.

В отличие от прямых алгоритмов требует мешьше памяти и мощности, что является несомненным плюсом для больших матриц.

Несмотря на свою скорость работы и экономию памяти, сначала не был популярным алгоритмом из – за недостаточной вычислительной устойчивости. В 1970 году Ojalvo и Newman [1] показали способ сделать алгоритм достаточно устойчивым. В этой же статье алгоритм был применен к расчету инженерной конструкции с большим количеством узлов, которые подвергались динамической нагрузке.


1.2 Математическое описание алгоритма

Памятка: Степенной метод нахождения наибольшего собственного числа матрицы можно сформулировать в предельном виде: если [math] b_0 [/math] – случайный вектор, и [math] b_n+1 = Ab_n [/math], тогда для больших чисел n предел [math]x_n/||x_n|| [/math] стремится к нормированному наибольшему собственному вектору.

Алгоритм Ланцоша комбинирует метод Ланцоша для нахождения крыловского подпространства и метод Релэя – Ритца.

Подпространство Крылова для степенного метода: [math] K_m(v,A) = span[x_1, Ax_1, A^2x_1, ..., A^{k-1}x_1] [/math]

В качестве входных данных для алгоритма Ланцоша подаются квадратная матрица размерности [math]n[/math]X[math]n[/math]: [math]A=A^T[/math]; а так же вектор начального приближения [math]b[/math].

Метод осуществляет поиск трехдиагональной симметричной матрицы [math]T_k=Q_k^TAQ_k[/math]. Причем собственные значения [math]T_k[/math] таковы, что приближают собственные значения исходной матрицы [math]A[/math]. То есть на каждом [math]k[/math]-м шаге из ортонормированных векторов Ланцоша строится матрица [math]Q_k = [q_1,q_2,...,q_k][/math] и в качестве приближенных собственных значений матрицы [math]A[/math] принимаются числа Ритца.

Из-за ошибок округления вектора [math] A^{k-1}x_1 [/math], формирующие подпространство Крылова, становятся неортогональными. Чтобы решить данную прорблему, проводят переортогонализацию методом Грамма-Шмидта.

1.3 Вычислительное ядро алгоритма

Вычислительным ядром данного алгоритма являются следующие шаги:

  • 1. [math]Aq=( \sum\nolimits_{i=^n}a_{1i}q_i, \sum\nolimits_{i=2}^na_{2i}q_i, ..., \sum\nolimits_{i=1}^na_{ni}q_i)[/math].
  • 2. [math]z=z-\sum\nolimits_{i=1}^{k}(z^Tq_i)q_i.[/math]

В данном случае первая операция выполняет умножение симметричной матрицы [math]A[/math] размерности [math]n[/math]X[math]n[/math] на [math]n[/math]-мерный вектор [math]q[/math], вследствие чего вычислительная сложность выполнения заключается в [math]n^2[/math] умножений и [math]n^2-n[/math] сложений. Второе действие является процессом ортогонализации Грама-Шмидта. В последнем действии вычисляются [math]k^2n+k(n+2)[/math] умножений и [math]k^2n + k(n + 1) + 2[/math] операций сложения.

1.4 Макроструктура алгоритма

  • 1. Скалярное произведение: [math] (x,y) [/math].
  • 2. Суммирование: [math] x+\alpha y [/math].


1.5 Схема реализации последовательного алгоритма

[math] \begin{array}{l} \mathtt{input:}\; A, b, k\\ q_1 = b / \Vert b \Vert_2\\ Q = q_1\\ \mathtt{for}\; j = \overline{1, k}:\\ \quad z = A q_j \\ \quad \alpha_j = q_j^T z \\ \quad z = z - Q \left( Q^T z \right) \\ \quad z = z - Q \left( Q^T z \right)\\ \quad \beta_j = \Vert z \Vert_2\\ \quad \mathtt{if }\; \beta_j = 0\\ \quad \quad \mathtt{exit}\\ \quad \mathtt{end \; if}\\ \quad q_{j+1} = z/\beta_j\\ \quad Q = [Q, q_{j + 1}]\\ \mathtt{end \; for}\\ \mathtt{output:}\; [\alpha_1, \dots, \alpha_k], [\beta_1, \dots, \beta_{k - 1}], [q_1, \dots, q_k]. \end{array} [/math]

Кроме того, заметим, что очень часто в макрооперациях возникает операция вычисления суммы всех элементов массива. Её необходимо выполнять и при умножении матрицы на вектор, и при вычислении скалярного произведения, и при вычислении нормы вектора. Разные методы суммирования дают разный ресурс параллелизма. В этой работе предполагается, что везде для суммирования используется последовательный способ.

1.6 Последовательная сложность алгоритма

Количество операций складывается из количества операций для классического метода Ланцоша[2] и количества операций для переортогонализации методом грамма-Шмидта[3].

Итоговая сложность составляет [math]O(n^2)+O(nk^2) [/math].

1.7 Информационный граф

Graph1.png

1.8 Входные и выходные данные алгоритма

На вход принимается сама матрица [math] A \in R^{n \times n}[/math], случайный вектор [math]b[/math] (впрочем возможен вариант, при котором этот вектор генерируется случайным образом). Ввиду симметричности входной матрицы достаточно передать лишь ее верхнюю треугольную матрицу, что дает объем входных данных [math]\frac{n(n + 1)}{2}[/math].


Выходными данными для [math]j[/math]ой итерации являются вектор [math] Aq_j [/math] и собственное число [math] \lambda [/math]. Общий объем выходных данных [math]k(n+1)[/math].

1.9 Свойства алгоритма

Если [math]A[/math] эрмитова матрица, то алгоритм Ланцоша и Bi-Lanczos сходятся к одинаковым трехдиагональным матрицам ритца[4].

При реализации классического алгоритма Ланцоша возникает большая погрешность при округлении. Вариант с полной переортогонализацией позволяет избегать больших погрешностей, однако является более ресурсоемким. Существует промежуточный вариант с частичной переортогонализацией.

Алгоритм может завершить свою работу досрочно, когда найденные собственные значения будут достаточно близки к целевым.

1.10 Ресурс параллелизма алгоритма

Хотя алгоритм является итерационным, возможно распараллелить внутри каждой итерации умножение матрицы на вектор и процесс переортогонализации Грамма-Шмидта.

Процесс умножения матриц matvec можно распараллелить несколькими способами[5].


1.11 Библиотеки реализующие алгоритм

The IETL Project http://www.comp-phys.org/software/ietl/ C++

NAG Library http://www.nag.com/content/nag-library C, C++, Fortran, C#, MATLAB, R

ARPACK https://people.sc.fsu.edu/~jburkardt/m_src/arpack/arpack.html MATLAB

GrapLab https://turi.com/products/create/open_source.html C++

С частичной переортаганализацией

LANSO/PLANSO http://web.cs.ucdavis.edu/~bai/ET/lanczos_methods/overview_PLANSO.html Fortran (уже распараллелена)

2 Литература

Ojalvo, I.U. and Newman, M., "Vibration modes of large structures by an automatic matrix-reduction method", AIAA J., 8 (7), 1234–1239 (1970).