Алгоритм Форда-Фалкерсона: различия между версиями
[непроверенная версия] | [непроверенная версия] |
Daryin (обсуждение | вклад) |
Daryin (обсуждение | вклад) |
||
Строка 24: | Строка 24: | ||
=== Существующие реализации алгоритма === | === Существующие реализации алгоритма === | ||
− | * [http://www.boost.org/libs/graph/doc/ Boost Graph Library] (функция <code>[http://www.boost.org/libs/graph/doc/edmonds_karp_max_flow.html edmonds_karp_max_flow]</code>): алгоритм Эдмонса–Карпа, сложность <math>O(nm^2)</math> для действительных весов и <math>O(Kmn)</math>. | + | * [http://www.boost.org/libs/graph/doc/ Boost Graph Library] (функция <code>[http://www.boost.org/libs/graph/doc/edmonds_karp_max_flow.html edmonds_karp_max_flow]</code>): алгоритм Эдмонса–Карпа, сложность <math>O(nm^2)</math> для действительных весов и <math>O(Kmn)</math> для целых, не превосходящих <math>K</math>. |
== Литература == | == Литература == | ||
<references /> | <references /> |
Версия 02:18, 11 июня 2015
Содержание
- 1 Свойства и структура алгоритмов
- 1.1 Общее описание алгоритма
- 1.2 Математическое описание
- 1.3 Вычислительное ядро алгоритма
- 1.4 Макроструктура алгоритма
- 1.5 Описание схемы реализации последовательного алгоритма
- 1.6 Последовательная сложность алгоритма
- 1.7 Информационный граф
- 1.8 Описание ресурса параллелизма алгоритма
- 1.9 Описание входных и выходных данных
- 1.10 Свойства алгоритма
- 2 Программная реализация алгоритмов
- 2.1 Особенности реализации последовательного алгоритма
- 2.2 Описание локальности данных и вычислений
- 2.3 Возможные способы и особенности реализации параллельного алгоритма
- 2.4 Масштабируемость алгоритма и его реализации
- 2.5 Динамические характеристики и эффективность реализации алгоритма
- 2.6 Выводы для классов архитектур
- 2.7 Существующие реализации алгоритма
- 3 Литература
1 Свойства и структура алгоритмов
1.1 Общее описание алгоритма
Алгоритм Форда-Фалкерсона[1] (с последующими усовершенствованиями Эдмондса-Карпа[2] и Е. А. Диница[3]) предназначен для решения задачи о максимальном потоке в транспортной сети. Время работы алгоритма [math]O(n^2m)[/math] (для алгоритма Диница). В случае целых пропускных способностей, не превосходящих [math]K[/math], сложность [math]O(Km)[/math].
1.2 Математическое описание
1.3 Вычислительное ядро алгоритма
1.4 Макроструктура алгоритма
1.5 Описание схемы реализации последовательного алгоритма
1.6 Последовательная сложность алгоритма
1.7 Информационный граф
1.8 Описание ресурса параллелизма алгоритма
Основной объём вычислений в алгоритме Форда-Фалкерсона приходится на поиск путей от источника к стоку. С этой целью может применяться поиск в ширину, который хорошо распараллеливается. Наилучших результатов можно достичь, если распределить вершины между узлами по слоям примерно одинаковой толщина, так что в каждом слое вершины были бы примерно на одинаковом удалении от источника (такое расслоение также можно найти поиском в ширину).
1.9 Описание входных и выходных данных
1.10 Свойства алгоритма
2 Программная реализация алгоритмов
2.1 Особенности реализации последовательного алгоритма
2.2 Описание локальности данных и вычислений
2.3 Возможные способы и особенности реализации параллельного алгоритма
2.4 Масштабируемость алгоритма и его реализации
2.5 Динамические характеристики и эффективность реализации алгоритма
2.6 Выводы для классов архитектур
2.7 Существующие реализации алгоритма
- Boost Graph Library (функция
edmonds_karp_max_flow
): алгоритм Эдмонса–Карпа, сложность [math]O(nm^2)[/math] для действительных весов и [math]O(Kmn)[/math] для целых, не превосходящих [math]K[/math].
3 Литература
- ↑ Ford, L R, Jr., and D R Fulkerson. “Maximal Flow Through a Network.” Canadian Journal of Mathematics 8 (1956): 399–404. doi:10.4153/CJM-1956-045-5.
- ↑ Edmonds, Jack, and Richard M Karp. “Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems.” Journal of the ACM 19, no. 2 (April 1972): 248–64. doi:10.1145/321694.321699.
- ↑ Диниц, Е. А. “Алгоритм решения задачи о максимальном потоке в сети со степенной оценкой.” Доклады АН СССР 194, no. 4 (1970): 754–57.