Вычисление betweenness centrality: различия между версиями
[непроверенная версия] | [непроверенная версия] |
Daryin (обсуждение | вклад) |
Daryin (обсуждение | вклад) |
||
Строка 39: | Строка 39: | ||
=== Описание схемы реализации последовательного алгоритма === | === Описание схемы реализации последовательного алгоритма === | ||
=== Последовательная сложность алгоритма === | === Последовательная сложность алгоритма === | ||
+ | Вычислительная сложность алгоритма Брандеса <math>O(n (S(n, m) + m))</math>, где <math>S(n, m)</math> – сложность поиска кратчайших путей от одной вершины. Такая оценка получается исходя из того, что для каждой из <math>n</math> вершин требуется найти кратчайшие пути (со сложностью <math>S(n, m)</math>) и затем вычислить зависимости и обновить центральность (со сложностью <math>O(m)</math>). | ||
+ | |||
+ | Для невзвешенного графа <math>S(n, m) = O(m)</math> (для алгоритма [[Поиск в ширину (BFS)|поиска в ширину]]) и общая сложность составляет <math>O(mn)</math>. | ||
+ | |||
+ | Для взвешенного графа <math>S(n, n) = O(m + n \ln n)</math> (для [[Алгоритм Дейкстры|алгоритма Дейкстры]]<ref>Dijkstra, E W. “A Note on Two Problems in Connexion with Graphs.” Numerische Mathematik 1, no. 1 (December 1959): 269–71. doi:10.1007/BF01386390.</ref> с использованием фибоначчиевой кучи<ref name=FibHeap>Fredman, Michael L, and Robert Endre Tarjan. “Fibonacci Heaps and Their Uses in Improved Network Optimization Algorithms.” Journal of the ACM 34, no. 3 (July 1987): 596–615. doi:10.1145/28869.28874.</ref>) и общая сложность составляет <math>O(mn + n^2 \ln n)</math>. | ||
+ | |||
+ | Используемый объём памяти в обоих случаях составляет <math>O(m + n)</math>: для каждой вершины необходимо хранить зависимость текущей вершины <math>s</math> и значение центральности, а для каждого ребра – отметку, лежит ли оно на кратчайшем пути. | ||
+ | |||
=== Информационный граф === | === Информационный граф === | ||
=== Описание ресурса параллелизма алгоритма === | === Описание ресурса параллелизма алгоритма === |
Версия 16:15, 23 июня 2015
Содержание
- 1 Свойства и структура алгоритмов
- 1.1 Общее описание алгоритма
- 1.2 Математическое описание
- 1.3 Вычислительное ядро алгоритма
- 1.4 Макроструктура алгоритма
- 1.5 Описание схемы реализации последовательного алгоритма
- 1.6 Последовательная сложность алгоритма
- 1.7 Информационный граф
- 1.8 Описание ресурса параллелизма алгоритма
- 1.9 Описание входных и выходных данных
- 1.10 Свойства алгоритма
- 2 Программная реализация алгоритмов
- 2.1 Особенности реализации последовательного алгоритма
- 2.2 Описание локальности данных и вычислений
- 2.3 Возможные способы и особенности реализации параллельного алгоритма
- 2.4 Масштабируемость алгоритма и его реализации
- 2.5 Динамические характеристики и эффективность реализации алгоритма
- 2.6 Выводы для классов архитектур
- 2.7 Существующие реализации алгоритма
- 3 Литература
1 Свойства и структура алгоритмов
1.1 Общее описание алгоритма
Центральностью (англ. betweenness centrality[1]) вершины [math]v[/math] графа [math]G = (V, E)[/math] называется величина
- [math] C_B(v) = \sum_{s \ne t \ne v \in V} \frac{\sigma_{st}(v)}{\sigma_{st}}, [/math]
где [math]\sigma_{st}[/math] – число различных кратчайших путей в графе [math]G[/math] от вершины [math]s[/math] к вершине [math]t[/math], а [math]\sigma_{st}(v)[/math] – число таких путей, проходящих через вершину [math]v[/math].
Алгоритм Брандеса[2] вычисляет центральность всех вершин графа за время [math]O(mn)[/math] невзвешенного графа и [math]O(mn + n^2 \ln n)[/math] для взвешенного.
1.2 Математическое описание
Пусть на графе [math]G[/math] заданы положительные веса рёбер [math]f(e)[/math], [math]e \in E[/math]. Если граф невзвешенный, то [math]f(e) \equiv 1[/math]. Обозначим через [math]d(v, w)[/math] кратчайшее расстояние между вершинами [math]v[/math] и [math]w[/math]. Множество
- [math] P_s(v) = \{ w \in V \mid d(s, v) = d(s, w) + f(w, v) \} [/math]
состоит из вершин [math]w[/math], предшествующих [math]v[/math] на кратчайших путях от [math]s[/math] к [math]v[/math].
Зависимостью вершины [math]s[/math] от вершины [math]v[/math] называется величина
- [math] \delta_s(v) = \sum_{t \in V} \frac{\sigma_{st}(v)}{\sigma_{st}}. [/math]
По соглашению [math]\sigma_{ss} = 1[/math]. Центральность тогда равна сумме зависимостей от всех вершин графа:
- [math] C_B(v) = \sum_{s \ne v} \delta_s(v). [/math]
Брандес доказал[2], что зависимость вершин удовлетворяет рекурсивному соотношению
- [math] \delta_s(v) = \sum_{v \in P_s(w)} \frac{\sigma_{sv}}{\sigma_{sw}} \left( 1 + \delta_s(w) \right). [/math]
Таким образом, зависимость [math]s[/math] от всех вершин может быть вычислена за время [math]O(m)[/math] после нахождения кратчайших путей от вершины [math]s[/math].
1.3 Вычислительное ядро алгоритма
Основной объём вычислений в алгоритме Брандеса приходится на решение задачи поиска кратчайших путей одной вершины (для взвешенного графа) или на поиск в ширину (для невзвешенного).
1.4 Макроструктура алгоритма
1.5 Описание схемы реализации последовательного алгоритма
1.6 Последовательная сложность алгоритма
Вычислительная сложность алгоритма Брандеса [math]O(n (S(n, m) + m))[/math], где [math]S(n, m)[/math] – сложность поиска кратчайших путей от одной вершины. Такая оценка получается исходя из того, что для каждой из [math]n[/math] вершин требуется найти кратчайшие пути (со сложностью [math]S(n, m)[/math]) и затем вычислить зависимости и обновить центральность (со сложностью [math]O(m)[/math]).
Для невзвешенного графа [math]S(n, m) = O(m)[/math] (для алгоритма поиска в ширину) и общая сложность составляет [math]O(mn)[/math].
Для взвешенного графа [math]S(n, n) = O(m + n \ln n)[/math] (для алгоритма Дейкстры[3] с использованием фибоначчиевой кучи[4]) и общая сложность составляет [math]O(mn + n^2 \ln n)[/math].
Используемый объём памяти в обоих случаях составляет [math]O(m + n)[/math]: для каждой вершины необходимо хранить зависимость текущей вершины [math]s[/math] и значение центральности, а для каждого ребра – отметку, лежит ли оно на кратчайшем пути.
1.7 Информационный граф
1.8 Описание ресурса параллелизма алгоритма
Алгоритм обладает высоким потенциалом параллелизма, как при вычислении кратчайших путей, так и при вычислении зависимостей вершин. Существуют эффективные реализации для GPU.[5]
1.9 Описание входных и выходных данных
1.10 Свойства алгоритма
2 Программная реализация алгоритмов
2.1 Особенности реализации последовательного алгоритма
2.2 Описание локальности данных и вычислений
2.3 Возможные способы и особенности реализации параллельного алгоритма
2.4 Масштабируемость алгоритма и его реализации
2.5 Динамические характеристики и эффективность реализации алгоритма
2.6 Выводы для классов архитектур
2.7 Существующие реализации алгоритма
- C++: Boost Graph Library (функция
betweenness_centrality
). - C++, MPI: Parallel Boost Graph Library
- функция
brandes_betweenness_centrality
вычисляет центральность вершин распределённого графа; - функция
non_distributed_brandes_betweenness_centrality
вычисляет центральность вершин графа, помещающегося в память одного узла, распределяя между узлами работу по поиску кратчайших расстояний.
- функция
- Java: WebGraph (класс
BetweennessCentrality
), многопоточная реализация. - Python: NetworkX (функция
betweenness_centrality
). - Python/C++: NetworKit (класс
networkit.centrality.Betweenness
).
3 Литература
- ↑ Freeman, Linton C. “A Set of Measures of Centrality Based on Betweenness.” Sociometry 40, no. 1 (March 1977): 35. doi:10.2307/3033543.
- ↑ 2,0 2,1 Brandes, Ulrik. “A Faster Algorithm for Betweenness Centrality.” The Journal of Mathematical Sociology 25, no. 2 (June 2001): 163–77. doi:10.1080/0022250X.2001.9990249.
- ↑ Dijkstra, E W. “A Note on Two Problems in Connexion with Graphs.” Numerische Mathematik 1, no. 1 (December 1959): 269–71. doi:10.1007/BF01386390.
- ↑ Fredman, Michael L, and Robert Endre Tarjan. “Fibonacci Heaps and Their Uses in Improved Network Optimization Algorithms.” Journal of the ACM 34, no. 3 (July 1987): 596–615. doi:10.1145/28869.28874.
- ↑ McLaughlin, Adam, and David A Bader. “Scalable and High Performance Betweenness Centrality on the GPU,” SC'14, 572–83, IEEE Press, 2014. doi:10.1109/SC.2014.52.